Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/217211
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Toward nanotechnology-enabled approaches against the COVID-19 pandemic

AutorWeiss, Carsten; Carriere, Marie; Fusco, Laura; Capua, Ilaria; Regla-Nava, José Ángel ; Pasquali, Matteo; Scott, James A.; Vitale, Flavia; Unal, Mehmet Altay; Mattevi, Cecilia; Bedognetti, Davide; Merkoçi, Arben CSIC ORCID; Tasciotti, Ennio; Yilmazer, Açelya; Gogotsi, Yury; Stellacci, Francesco; Delogu, Lucia Gemma
Palabras claveNanomaterials
Immunology
Infectious diseases
Viruses
Vaccination
Fecha de publicación10-jun-2020
EditorACS Publications
CitaciónACS Nano 14(6): 6383-6406 (2020)
ResumenThe COVID-19 outbreak has fueled a global demand for effective diagnosis and treatment as well as mitigation of the spread of infection, all through large-scale approaches such as specific alternative antiviral methods and classical disinfection protocols. Based on an abundance of engineered materials identifiable by their useful physicochemical properties through versatile chemical functionalization, nanotechnology offers a number of approaches to cope with this emergency. Here, through a multidisciplinary Perspective encompassing diverse fields such as virology, biology, medicine, engineering, chemistry, materials science, and computational science, we outline how nanotechnology-based strategies can support the fight against COVID-19, as well as infectious diseases in general, including future pandemics. Considering what we know so far about the life cycle of the virus, we envision key steps where nanotechnology could counter the disease. First, nanoparticles (NPs) can offer alternative methods to classical disinfection protocols used in healthcare settings, thanks to their intrinsic antipathogenic properties and/or their ability to inactivate viruses, bacteria, fungi, or yeasts either photothermally or via photocatalysis-induced reactive oxygen species (ROS) generation. Nanotechnology tools to inactivate SARS-CoV-2 in patients could also be explored. In this case, nanomaterials could be used to deliver drugs to the pulmonary system to inhibit interaction between angiotensin-converting enzyme 2 (ACE2) receptors and viral S protein. Moreover, the concept of “nanoimmunity by design” can help us to design materials for immune modulation, either stimulating or suppressing the immune response, which would find applications in the context of vaccine development for SARS-CoV-2 or in counteracting the cytokine storm, respectively. In addition to disease prevention and therapeutic potential, nanotechnology has important roles in diagnostics, with potential to support the development of simple, fast, and cost-effective nanotechnology-based assays to monitor the presence of SARS-CoV-2 and related biomarkers. In summary, nanotechnology is critical in counteracting COVID-19 and will be vital when preparing for future pandemics.
Versión del editorhttps://doi.org/10.1021/acsnano.0c03697
URIhttp://hdl.handle.net/10261/217211
DOI10.1021/acsnano.0c03697
ISSN1936-0851
E-ISSN1936-086X
Aparece en las colecciones: (PTI Salud Global) Colección Especial COVID-19
(CIN2) Artículos
(CNB) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

216
checked on 22-abr-2024

SCOPUSTM   
Citations

443
checked on 15-abr-2024

WEB OF SCIENCETM
Citations

362
checked on 22-feb-2024

Page view(s)

309
checked on 24-abr-2024

Download(s)

30
checked on 24-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.