English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/216763
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorTlelo-Cuautle, E.-
dc.contributor.authorDíaz-Muñoz, Jonathan Daniel-
dc.contributor.authorGonzález-Zapata, Astrid Maritza-
dc.contributor.authorLi, Rui-
dc.contributor.authorLeón-Salas, Walter Daniel-
dc.contributor.authorGuillén-Fernández, Omar-
dc.contributor.authorCruz-Vega, Israel-
dc.date.accessioned2020-07-16T10:50:20Z-
dc.date.available2020-07-16T10:50:20Z-
dc.date.issued2020-
dc.identifierdoi: 10.3390/s20051326-
dc.identifierissn: 1424-8220-
dc.identifier.citationSensors 20 (2020)-
dc.identifier.urihttp://hdl.handle.net/10261/216763-
dc.description.abstractChaotic systems implemented by artificial neural networks are good candidates for data encryption. In this manner, this paper introduces the cryptographic application of the Hopfield and the Hindmarsh–Rose neurons. The contribution is focused on finding suitable coefficient values of the neurons to generate robust random binary sequences that can be used in image encryption. This task is performed by evaluating the bifurcation diagrams from which one chooses appropriate coefficient values of the mathematical models that produce high positive Lyapunov exponent and Kaplan–Yorke dimension values, which are computed using TISEAN. The randomness of both the Hopfield and the Hindmarsh–Rose neurons is evaluated from chaotic time series data by performing National Institute of Standard and Technology (NIST) tests. The implementation of both neurons is done using field-programmable gate arrays whose architectures are used to develop an encryption system for RGB images. The success of the encryption system is confirmed by performing correlation, histogram, variance, entropy, and Number of Pixel Change Rate (NPCR) tests.-
dc.languageeng-
dc.publisherMolecular Diversity Preservation International-
dc.relation.isversionofPublisher's version-
dc.rightsopenAccess-
dc.titleChaotic image encryption using hopfield and hindmarsh–rose neurons implemented on FPGA-
dc.typeartículo-
dc.relation.publisherversionhttp://dx.doi.org/10.3390/s20051326-
dc.date.updated2020-07-16T10:50:21Z-
dc.rights.licensehttp://creativecommons.org/licenses/by/4.0/-
dc.relation.csic-
Appears in Collections:(IMSE-CNM) Artículos
Files in This Item:
File Description SizeFormat 
sensors-20-01326.pdf9,7 MBAdobe PDFThumbnail
View/Open
Show simple item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.