Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/215937
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorAgrawal, Piyush-
dc.contributor.authorRast, Mark P.-
dc.contributor.authorGosic, Milan-
dc.contributor.authorBellot Rubio, Luis R.-
dc.contributor.authorRempel, Matthias-
dc.date.accessioned2020-07-03T09:10:31Z-
dc.date.available2020-07-03T09:10:31Z-
dc.date.issued2018-
dc.identifierdoi: 10.3847/1538-4357/aaa251-
dc.identifiere-issn: 1538-4357-
dc.identifierissn: 0004-637X-
dc.identifier.citationAstrophysical Journal 854(2): 118 (2018)-
dc.identifier.urihttp://hdl.handle.net/10261/215937-
dc.description.abstractThe motions of small-scale magnetic flux elements in the solar photosphere can provide some measure of the Lagrangian properties of the convective flow. Measurements of these motions have been critical in estimating the turbulent diffusion coefficient in flux-transport dynamo models and in determining the Alfvén wave excitation spectrum for coronal heating models. We examine the motions of internetwork flux elements in Hinode/Narrowband Filter Imager magnetograms and study the scaling of their mean squared displacement and the shape of their displacement probability distribution as a function of time. We find that the mean squared displacement scales super-diffusively with a slope of about 1.48. Super-diffusive scaling has been observed in other studies for temporal increments as small as 5 s, increments over which ballistic scaling would be expected. Using high-cadence MURaM simulations, we show that the observed super-diffusive scaling at short increments is a consequence of random changes in barycenter positions due to flux evolution. We also find that for long temporal increments, beyond granular lifetimes, the observed displacement distribution deviates from that expected for a diffusive process, evolving from Rayleigh to Gaussian. This change in distribution can be modeled analytically by accounting for supergranular advection along with granular motions. These results complicate the interpretation of magnetic element motions as strictly advective or diffusive on short and long timescales and suggest that measurements of magnetic element motions must be used with caution in turbulent diffusion or wave excitation models. We propose that passive tracer motions in measured photospheric flows may yield more robust transport statistics. © 2018. The American Astronomical Society. All rights reserved.-
dc.description.sponsorshipThis paper is based on the data acquired during Hinode Operation Plan 151. We thank the Hinode Chief Observers for their efforts in executing this plan. Hinode was developed and launched by ISAS/JAXA with NAOJ as a domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in cooperation with ESA and NSC (Norway). This work has been partially funded by the Spanish Ministerio de Economia y Competitividad through projects ESP2013-47349-C6-1-R and ESP2016-77548-C5-1-R including European FEDER funds. The research has made use of NASA's Astrophysics Data System Bibliographic Services. N.C.A.R. is supported by the National Science Foundation. The authors thank Samuel Van Kooten for magnetic bright points tracking. M.P.R. was partially supported by NASA award NNX12AB35G. P.A. acknowledges the support of the University of Colorado's George Ellery Hale Graduate Student Fellowship.-
dc.languageeng-
dc.publisherIOP Publishing-
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2013-47349-C6-1-R-
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2016-77548-C5-1-R-
dc.relation.isversionofPostprint-
dc.rightsopenAccess-
dc.subjectSun: granulation-
dc.subjectSun: photosphere-
dc.titleTransport of Internetwork Magnetic Flux Elements in the Solar Photosphere-
dc.typeartículo-
dc.identifier.doi10.3847/1538-4357/aaa251-
dc.relation.publisherversionhttp://dx.doi.org/10.3847/1538-4357/aaa251-
dc.date.updated2020-07-03T09:10:32Z-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.contributor.funderEuropean Commission-
dc.contributor.funderNational Science Foundation (US)-
dc.contributor.funderNational Aeronautics and Space Administration (US)-
dc.contributor.funderUniversity of Colorado-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/100010174es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100000104es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100000001es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairetypeartículo-
Aparece en las colecciones: (IAA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
IAA_ 2018ApJ...854..118A.pdf1,85 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

8
checked on 20-abr-2024

WEB OF SCIENCETM
Citations

5
checked on 25-feb-2024

Page view(s)

101
checked on 24-abr-2024

Download(s)

107
checked on 24-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.