English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/214845
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

Title

Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae

AuthorsDomenech, Mirian ; Ramos-Sevillano, Elisa ; García, Ernesto ; Moscoso, Miriam ; Yuste, José
KeywordsC-reactive protein
Staphylococcus-epidermidis
Bacterial biofilms
Otitis-media
PspC
Immunology
Deficient
Infection
Virulence
Interacts
Issue DateJul-2013
PublisherAmerican Society for Microbiology
CitationInfect Immun 81(7) 2606-2615 (2013)
AbstractStreptococcus pneumoniae is a frequent member of the microbiota of the human nasopharynx. Colonization of the nasopharyngeal tract is a first and necessary step in the infectious process and often involves the formation of sessile microbial communities by this human pathogen. The ability to grow and persist as biofilms is an advantage for many microorganisms, because biofilm-grown bacteria show reduced susceptibility to antimicrobial agents and hinder recognition by the immune system. The extent of host protection against biofilm-related pneumococcal disease has not been determined yet. Using pneumococcal strains growing as planktonic cultures or as biofilms, we have investigated the recognition of S. pneumoniae by the complement system and its interactions with human neutrophils. Deposition of C3b, the key complement component, was impaired on S. pneumoniae biofilms. In addition, binding of C-reactive protein and the complement component C1q to the pneumococcal surface was reduced in biofilm bacteria, demonstrating that pneumococcal biofilms avoid the activation of the classical complement pathway. In addition, recruitment of factor H, the downregulator of the alternative pathway, was enhanced by S. pneumoniae growing as biofilms. Our results also show that biofilm formation diverts the alternative complement pathway activation by a PspC-mediated mechanism. Furthermore, phagocytosis of pneumococcal biofilms was also impaired. The present study confirms that biofilm formation in S. pneumoniae is an efficient means of evading both the classical and the PspC-dependent alternative complement pathways the host immune system.
Description11 p.-6 fig.
Publisher version (URL)https://doi.org/10.1128/IAI.00491-13
URIhttp://hdl.handle.net/10261/214845
DOIhttp://dx.doi.org/10.1128/IAI.00491-13
ISSN0019-9567
E-ISSN0019-9567
Appears in Collections:(CIB) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdfRestringido15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.