English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/21387
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Mechanical behavior and oxidation resistance of Cr(Al)N coatings

AutorSánchez López, Juan Carlos; Martínez-Martínez, D. ; López Cartes, C. ; Fernández-Camacho, A. ; Brizuela, Marta; García Luis, A.; Oñate, J. I.
Palabras claveChromium compounds
Aluminium compounds
Oxidation
Nanocomposites
Sputtered coatings
Thin films
Sputter deposition
Crystallites
Chemical analysis
X-ray diffraction
X-ray photoelectron spectra
Fecha de publicación21-jun-2005
EditorAmerican Vacuum Society
CitaciónJournal of Vacuum Science and Technology - Section A 23(4): 681-686 (2005)
ResumenNanocrystalline chromium nitride and ternary chromium aluminium nitride thin films were deposited by reactive magnetron sputtering of Cr and Al targets in argon/nitrogen atmosphere varying the sputtering power and gas composition. The coatings were characterized in terms of crystal phase, chemical composition, microstructure, and mechanical properties by x-ray diffraction, x-ray photoelectron spectroscopy, including x-ray-induced Auger electron spectroscopy, transmission electron microscopy, selected-area electron diffraction, electron energy-loss spectroscopy, cross-sectional scanning electron microscopy, and ultramicrohardness tester. The incorporation of Al in the composition of the films produces an increase in the mechanical properties (hardness and reduced Young's modulus) and an increased thermal resistance against oxidation in comparison to the pure CrN composition. The hardness behavior was attributed mainly to a reduction of the CrN crystallite size according to a Hall–Petch relationship. The oxidation resistance was evaluated after annealing both types of coatings in air up to 800 °C. The oxygen content and the crystallite size appear almost unaltered in the CrAlN in contrast to the pure CrN films where the oxidation and grain growth is very noticeable at 800 °C. This improvement in thermal stability in air is explained by the formation of a nanocomposite structure of small CrN crystals embedded in an amorphous aluminum oxide or oxinitride matrix that prevents the CrN phase from crystal growth and further oxidation.
Descripción6 pages.-- Pacs numbers: 81.05.-t; 81.07.Bc; 68.60.Bs; 68.35.Gy; 81.65.Mq; 79.20.Fv; 82.80.Pv; 79.60.Bm; 81.40.Jj; 62.20.Dc; 81.40.Gh; 79.20.Uv; 62.20.Qp; 81.40.Np; 68.37.Hk; 81.15.Cd; 68.55.Ac; 68.37.Lp
Versión del editorhttp://dx.doi.org/10.1116/1.1946711
URIhttp://hdl.handle.net/10261/21387
DOI10.1116/1.1946711
ISSN0734-2101
Aparece en las colecciones: (ICMS) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.