English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/21350
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 5 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Spherical brushes within spherical cavities: A self-consistent field and Monte Carlo study

AutorCerdà, Joan J. ; Sintes, Tomàs ; Toral, Raúl
Fecha de publicación1-oct-2009
EditorAmerican Institute of Physics
CitaciónJournal of Chemical Physics Beta 131(13): 134901 (2009)
ResumenWe present an extensive numerical study on the behavior of spherical brushes confined into a spherical cavity. Self-consistent field (SCF) and off-lattice Monte Carlo (MC) techniques are used in order to determine the monomer and end-chain density profiles and the cavity pressure as a function of the brush properties. A comparison of the results obtained via SCF, MC, and the Flory theory for polymer solutions reveals SCF calculations to be a valuable alternative to MC simulations in the case of free and softly compressed brushes, while the Flory’s theory accounts remarkably well for the pressure in the strongly compressed regime. In the range of high compressions, we have found the cavity pressure P to follow a scale relationship with the monomer volume fraction v, P ∼ vα. SCF calculations give α = 2.15±0.05, whereas MC simulations lead to α = 2.73±0.04. The underestimation of α by the SCF method is explained in terms of the inappropriate account of the monomer density correlations when a mean field approach is used.
Descripción8 pages, 8 figures.
Versión del editorhttp://dx.doi.org/10.1063/1.3238568
URIhttp://hdl.handle.net/10261/21350
DOI10.1063/1.3238568
ISSN0021-9606
Aparece en las colecciones: (IFISC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
GetPDFServlet.pdf285,45 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.