English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/212747
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Use of soil enzyme activities to assess the recovery of soil functions in abandoned coppice forest systems.

AuthorsHanadi Ananbeh; Marko Stojanović; Antonio Pompeiano; CarmenTrasar-Cepeda
KeywordsSessile oak forest
Quercus petraea forests
Soil hydrolytic enzyme 55 activities
Soil oxidoreductase activity
Issue Date2019
CitationScience of the Total Environment 694:133692 (2019)
AbstractCoppicing consists of periodically cutting back tree stems to ground level to stimulate the growth of multiple stems from the stool. In Central Europe, many coppiced forests were abandoned at the beginning of the last century owing to a decline in the demand for charcoal and wood. This was assumed to enable the forests to recover and the properties to become similar to those of unmanaged forest (high forest). Most studies on abandoned coppiced forest have focused on forest recovery, while soil recovery has generally been overlooked. With the aim of filling this gap, this study investigated the effect of coppicing abandonment on soil recovery by analysing the changes in soil enzyme activities (dehydrogenase, ß-glucosidase, invertase, urease, acid phosphatase and arylsulphatase). Two differently managed sessile oak (Quercus petraea) forests were selected for study: a former coppice forest, abandoned more than 90 years ago, and an undisturbed forest. The analytical data were compared to assess the degree of recovery of the soil in the abandoned coppice forest. The soil organic matter content was two times lower in the abandoned coppice than in the high forest, suggesting that organic matter depletion due the past coppicing is a long-term effect. All of the absolute enzyme activities were also two times lower in the abandoned coppice forest soil than in the high forest soil. However, the specific enzyme activities were similar in both types of soil. This indicates that metabolic activity is similar in both soil types, suggesting that it either recovers faster than organic matter and soil enzyme activity or that, despite the depletion in organic matter and enzyme activities, metabolic activity was sustained in coppiced forest soil. However, in the latter case this would imply that organic matter and soil enzymes were lost in 53 exactly the same proportion, which is highly improbable.
Appears in Collections:(IIAG) Artículos
Files in This Item:
File Description SizeFormat 
Ananbeh et al 2019.pdf1,47 MBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.