Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/212472
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorGuster, Bogdanes_ES
dc.contributor.authorPruneda, Migueles_ES
dc.contributor.authorOrdejón, Pabloes_ES
dc.contributor.authorCanadell, Enrices_ES
dc.contributor.authorPouget, Jean-Paules_ES
dc.date.accessioned2020-05-28T12:03:07Z-
dc.date.available2020-05-28T12:03:07Z-
dc.date.issued2020-05-27-
dc.identifier.citationJournal of Physics - Condensed Matter 32(34): 345701 (2020)es_ES
dc.identifier.issn0953-8984-
dc.identifier.urihttp://hdl.handle.net/10261/212472-
dc.description.abstractWe report the first-principles DFT calculation of the electron–hole Lindhard response function of the (TMTSF)2PF6 Bechgaard salt using the real triclinic low-temperature structure. The Lindhard response is found to change considerably with temperature. Near the 2kF spin density wave (SDW) instability it has the shape of a broad triangular plateau as a result of the multiple nesting associated with the warped quasi-one-dimensional Fermi surface. The evolution of the 2kF broad maximum as well as the effect of pressure and deuteration is calculated and analyzed. The thermal dependence of the electron–hole coherence length deduced from these calculations compares very well with the experimental thermal evolution of the 2kF bond order wave correlation length. The existence of a triangular plateau of maxima in the low-temperature electron–hole Lindhard response of (TMTSF)2PF6 should favor a substantial mixing of q-dependent fluctuations which can have important consequences in understanding the phase diagram of the 2kF SDW ground state, the mechanism of superconductivity and the magneto-transport of this paradigmatic quasi-one-dimensional material. The first-principles DFT Lindhard response provides a very accurate and unbiased approach to the low-temperature instabilities of (TMTSF)2PF6 which can take into account in a simple way 3D effects and subtle structural variations, thus providing a very valuable tool in understanding the remarkable physics of molecular conductorses_ES
dc.description.sponsorshipThis work was supported by Spanish MINECO (the Severo Ochoa Centers of Excellence Program under Grants No. SEV-2017-0706 and SEV-2015-0496), Spanish MICIU, AEI and EU FEDER (Grants No. PGC2018-096955-B-C43 and No. PGC2018-096955-B-C44), Generalitat de Catalunya (Grant No. 2017SGR1506 and the CERCA Program), and the European Union MaX Center of Excellence (EU-H2020 Grant No. 824143). C Bourbonnais and G Montambaux are thanked for a critical reading of the manuscript and D Jérome for useful discussions before this work.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Physics (Great Britain)es_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/SEV-2017-0706es_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SEV-2015-0496es_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096955-B-C43es_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096955-B-C44es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/824143es_ES
dc.relationPGC2018-096955-B-C43/AEI/10.13039/501100011033-
dc.relationPGC2018-096955-B-C44/AEI/10.13039/501100011033-
dc.relationSEV-2017-0706/AEI/10.13039/501100011033-
dc.relation.isversionofPostprintes_ES
dc.rightsopenAccessen_EN
dc.subjectBechgaard saltses_ES
dc.subjectSpin density waveses_ES
dc.subjectDensity functional theoryes_ES
dc.subjectLindhard response functiones_ES
dc.titleFermi surface electron–hole instability of the (TMTSF)2PF6 Bechgaard salt revealed by the first-principles Lindhard response functiones_ES
dc.typeartículoes_ES
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1088/1361-648X/ab8522es_ES
dc.embargo.terms2021-05-27es_ES
dc.contributor.funderMinisterio de Economía y Competitividad (España)es_ES
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (España)es_ES
dc.contributor.funderAgencia Estatal de Investigación (España)es_ES
dc.contributor.funderEuropean Commissiones_ES
dc.contributor.funderGeneralitat de Catalunyaes_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100011033es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100002809es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairetypeartículo-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
Aparece en las colecciones: (ICMAB) Artículos
(CIN2) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Guster_JPhysCondMatt_2020_postprint.pdf6,98 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

Page view(s)

183
checked on 28-mar-2024

Download(s)

196
checked on 28-mar-2024

Google ScholarTM

Check


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.