English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/211361
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


A combined approach to establishing the timing and magnitude of anthropogenic nutrient alteration in a mediterranean coastal lakewatershed system

AuthorsFuentealba, Magdalena; Latorre, Claudio; Frugone, M. ; Sarricolea, P.; Giralt, Santiago ; Contreras-López, Manuel; Prego, R. ; Bernárdez, Patricia ; Valero-Garcés, Blas L.
Issue Date2020
PublisherNature Publishing Group
CitationScientific Reports 10: 5864 (2020)
AbstractHuman activities have profoundly altered the global nutrient cycle through Land Use and Cover Changes (LUCCs) since the industrial revolution and especially during the Great Acceleration (1950 CE). Yet, the impact of such activities on terrestrial and aquatic ecosystems above their ecological baselines are not well known, especially when considering the response of these systems to the intensity of LUCCs on nutrient cycles. Here, we used a multiproxy approach (sedimentological, geochemical and isotopic analyses, historical records, climate data, and satellite images) to evaluate the role that LUCCs have on Nitrogen (N) cycling in a coastal mediterranean watershed system of central Chile over the last two centuries. Despite long-term anthropogenic use (agriculture, cattle grazing) in the Matanzas watershed– lake system, these LUCC appear to have had little impact on nutrient and organic matter transfer since the Spanish Colonial period. In contrast, the largest changes in N dynamics occurred in the mid-1970s, driven by the replacement of native forests and grasslands by government-subsidized tree plantations of introduced Monterey pine (Pinus radiata) and eucalyptus (Eucalyptus globulus). These LUCC had major impacts on the transfer of organic matter (which increased by 9.4%) and nutrients (as revealed by an increase in total N) to Laguna Matanzas. Our study shows that the presence of anthropogenic land use/cover changes do not necessarily alter nutrient supply and N availability per se but rather it is the magnitude and intensity of such changes that produce major impact on these processes in these mediterranean watersheds
Description13 pages, 2 tables, 7 figures.-- This article is licensed under a Creative Commons Attribution 4.0 International License
Publisher version (URL)https://doi.org/10.1038/s41598-020-62627-2
Appears in Collections:(Geo3Bcn) Artículos
(IIM) Artículos
Files in This Item:
File Description SizeFormat 
Combined_approach_2020_OA.pdf6,13 MBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.