English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/211298
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Structure, spectroscopic measurement, thermal studies and optical properties of a new non-centrosymmetric hybrid compound

AuthorsSakka, Ameni; Jellali, Aycha; Hamdi, Besma; Abdelbaky, Mohammed S. M.; Naïli, Houcine; García-Granda, Santiago ; Zouari, Rihad
KeywordsX-ray diffraction
Thermal studies
DFT calculations
Optical properties and photoluminescence study
Issue Date2019
CitationJournal of Molecular Structure 1198: 126867 (2019)
AbstractA novel inorganic-organic hybrid material of bis (5,7-dichloro-8-hydroxyquinolium) tetrachlorozincate (II) dihydrate was crystallized and characterized by IR, Raman, 13C NMR spectroscopy, scanning electron microscopy (SEM) and thermal analyses (TG/DTG/SDTA). The solid-state structures were determined by single crystal X-ray diffraction. The compound was found to crystallizes in the non-centrosymmetric orthorhombic system, space group P212121 with the following cell parameters a = 10.4872(3) Å, b = 13.4464 (5) Å, c = 18.0305 (7) Å, V = 2542.57(15) Ǻ3 and Z = 4, to ensure that our samples are single-phase, the purity of our products was verified by X-Ray Powder Diffraction Analysis, while the composition of our phase was verified by semi-quantitative analysis EDXS. Thermal analysis showed that the complexes decompose in three steps: the structural water was firstly progressively lost, then the neutral ligand of 5,7-dichloro-8-hydroxyquinolium and lastly the second ligand with 4 mol of chlorine in the form of hydrochloric acid. The final phase solid product at 713 °C is zinc oxide. The theoretical calculations were conducted using B3LYP/LanL2DZ basis sets using GAUSSIAN09, for studying the structural parameters, vibrational and non-linear optical characterization (NLO) of the investigated compound. The analyses of the optical spectra indicate that this compound has a direct band gap energy equal to (2.72 eV) due to direct transition. This energy is much larger than 0.02 eV. The photoluminescence properties (PL) of the compound were investigated in the solid-state at room temperature.
Publisher version (URL)https://doi.org/10.1016/j.molstruc.2019.07.114
Identifiersdoi: 10.1016/j.molstruc.2019.07.114
issn: 0022-2860
Appears in Collections:(CINN) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.