Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/210925
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorCampos-Martínez, José-
dc.contributor.authorHernández, Marta I.-
dc.contributor.authorHernández-Lamoneda, Ramón-
dc.contributor.authorBartolomei, Massimiliano-
dc.date.accessioned2020-05-10T11:19:22Z-
dc.date.available2020-05-10T11:19:22Z-
dc.date.issued2019-07-15-
dc.identifier.citationXXXVII Reunión Bienal de la Real Sociedad Española de Física (2019)-
dc.identifier.urihttp://hdl.handle.net/10261/210925-
dc.descriptionZaragoza, 15 -19 de julio de 2019-
dc.description.abstractIt has been recently found that pristine graphene and some other 2D materials can be permeated by protons and deuterium at room temperature [1,2], following a low barrier (~ 0.8 eV) activated process. Most of the theoretical attempts have found so far, that permeation of the H+ (D+) involves large energy barriers (around 3.5 eV) and therefore they are too high to explain experiments [3]. In previous models it was assumed an isolated proton permeating the 2D membrane. In this work however, we consider protonated graphene at high local coverage and explore the role played by nearby chemisorbed protons in the process. By using density functional theory calculations (DFT) applied to large molecular prototypes for graphene we have found [4] that when various protons are absorbed on carbons belonging to the same hexagonal ring, permeation barrier can be lowered down to 1.0 eV, thus making feasible the permeation of protons through pristine graphene. The proposed insertion mechanism necessarily need to count with the nearby protons and it could be of relevance not only to help in the understanding of the experimental results, but also in many other scenarios of basic and technological interest. References [1] S. Hu, M. Lozada-Hidalgo, F. C. Wang, A. Mishchenko, F. Schedin, R. R. Nair, E. W. Hill,D. W. Boukhvalov, M. I. Katsnelson, R. A. W. Dryfe, et al., Nature 516, 227 (2014). [2] M. Lozada-Hidalgo, S. Hu, O. Marshall, A. Mishchenko, A. N. Grigorenko, R. A. W. Dryfe,B. Radha, I. V. Grigorieva, and A. K. Geim, Science 351, 68 (2016). [3] Kroes et al., Phys. Chem. Chem. Phys. 19, 5813 (2017), Ekayanake et al. J. Phys.Chem C, 1231, 24335 (2017), Shi et al. J. Phys. Chem. Letts. 8, 4354 (2017), Feng et atl, J. Phys.Chem. Lett., 8 , 6009 (2017), Poltavsky et al. J. Chem. Phys., 148, 204707 (2018), Mazzuca et al, J. Chem. Phys., 148, 224301 (2018). [4] M. Bartolomei, M. I. Hernández, J. Campos-Martínez, R. Hernández-Lamoneda, Carbon, 144, 724-730 (2019).-
dc.languageeng-
dc.publisherReal Sociedad Española de Física-
dc.rightsopenAccess-
dc.titleA multi-proton cooperative mechanism for graphene permeation of protons-
dc.typepóster de congreso-
dc.date.updated2020-05-10T11:19:22Z-
dc.relation.csic-
dc.type.coarhttp://purl.org/coar/resource_type/c_6670es_ES
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairetypepóster de congreso-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Aparece en las colecciones: (CFMAC-IFF) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
A multi-proton cooperative.pdf228,33 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

Page view(s)

138
checked on 22-abr-2024

Download(s)

58
checked on 22-abr-2024

Google ScholarTM

Check


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.