Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/209878
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorFragogeorgi, Eirini A.-
dc.contributor.authorRouchota, Maritina-
dc.contributor.authorGeorgiou, Maria-
dc.contributor.authorVélez, Marisela-
dc.contributor.authorBouziotis, Penelope-
dc.contributor.authorLoudos, George-
dc.date.accessioned2020-04-30T15:44:37Z-
dc.date.available2020-04-30T15:44:37Z-
dc.date.issued2019-
dc.identifierdoi: 10.1177/2041731419854586-
dc.identifiere-issn: 2041-7314-
dc.identifier.citationJournal of Tissue Engineering 10 (2019)-
dc.identifier.urihttp://hdl.handle.net/10261/209878-
dc.description.abstract[EN] Bone is a dynamic tissue that constantly undergoes modeling and remodeling. Bone tissue engineering relying on the development of novel implant scaffolds for the treatment of pre-clinical bone defects has been extensively evaluated by histological techniques. The study of bone remodeling, that takes place over several weeks, is limited by the requirement of a large number of animals and time-consuming and labor-intensive procedures. X-ray-based imaging methods that can non-invasively detect the newly formed bone tissue have therefore been extensively applied in pre-clinical research and in clinical practice. The use of other imaging techniques at a pre-clinical level that act as supportive tools is convenient. This review mainly focuses on nuclear imaging methods (single photon emission computed tomography and positron emission tomography), either alone or used in combination with computed tomography. It addresses their application to small animal models with bone defects, both untreated and filled with substitute materials, to boost the knowledge on bone regenerative processes.-
dc.description.sponsorshipThe author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 645757. This study was co-supported through the Program of Industrial Scholarships of Stavros Niarchos Foundation and through IKY scholarships and co-financed by the European Union (European Social Fund ESF) and Greek national funds through the action entitled Reinforcement of Postdoctoral Researchers, in the framework of the Operational Program Human Resources Development Program, Education and Lifelong Learning of the National Strategic Reference Framework (NSRF) 2014-2020.-
dc.languageeng-
dc.publisherSage Publications-
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/645757-
dc.relation.isversionofPublisher's version-
dc.rightsopenAccess-
dc.subjectBone defects-
dc.subjectSingle photon emission computed tomography/positron emission tomography-
dc.subjectComputed tomography imaging-
dc.subjectHealing-
dc.subjectSubstitute materials-
dc.titleIn vivo imaging techniques for bone tissue engineering-
dc.typeartículo de revisión-
dc.identifier.doi10.1177/2041731419854586-
dc.relation.publisherversionhttp://dx.doi.org/10.1177/2041731419854586-
dc.date.updated2020-04-30T15:44:37Z-
dc.rights.licenseCreative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License http://www.creativecommons.org/licenses/by/4.0/-
dc.contributor.funderEuropean Commission-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.contributor.orcidFragogeorgi, Eirini A.[0000-0002-8272-746X]-
dc.identifier.pmid31258885-
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bces_ES
item.openairetypeartículo de revisión-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
Aparece en las colecciones: (ICP) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Fragogeorgi_In_vivo_2041731419854586.pdf500,75 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

PubMed Central
Citations

19
checked on 06-abr-2024

SCOPUSTM   
Citations

22
checked on 16-feb-2023

WEB OF SCIENCETM
Citations

24
checked on 07-may-2023

Page view(s)

92
checked on 19-abr-2024

Download(s)

166
checked on 19-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric



Este item está licenciado bajo una Licencia Creative Commons Creative Commons