English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/209745
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorAragó, M.-
dc.contributor.authorMoreno-Felici, J.-
dc.contributor.authorAbás, S.-
dc.contributor.authorRodríguez-Arévalo, S.-
dc.contributor.authorHyroššová, P.-
dc.contributor.authorFigueras, A.-
dc.contributor.authorViñals, F.-
dc.contributor.authorPérez, B.-
dc.contributor.authorLoza, M.I.-
dc.contributor.authorBrea, J.-
dc.contributor.authorLatorre, P.-
dc.contributor.authorCarrodeguas, J.A.-
dc.contributor.authorGarcía-Rovés, P.M.-
dc.contributor.authorGaldeano, C.-
dc.contributor.authorGinex, T.-
dc.contributor.authorLuque, F.J.-
dc.contributor.authorEscolano, C.-
dc.contributor.authorPerales, J.C-
dc.identifierdoi: 10.1016/j.biopha.2019.109601-
dc.identifierissn: 0753-3322-
dc.identifierissn: 1950-6007-
dc.identifier.citationBiomedicine and Pharmacotherapy 121 (2020)-
dc.description.abstractBackground: Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the decarboxylation of oxaloacetate to phosphoenolpyruvate. The mitochondrial isozyme, PEPCK-M is highly expressed in cancer cells, where it plays a role in nutrient stress response. To date, pharmacological strategies to target this pathway have not been pursued. Methods: A compound embodying a 3-alkyl-1,8-dibenzylxanthine nucleus (iPEPCK-2), was synthesized and successfully probed in silico on a PEPCK-M structural model. Potency and target engagement in vitro and in vivo were evaluated by kinetic and cellular thermal shift assays (CETSA). The compound and its target were validated in tumor growth models in vitro and in murine xenografts. Results: Cross-inhibitory capacity and increased potency as compared to 3-MPA were confirmed in vitro and in vivo. Treatment with iPEPCK-2 inhibited cell growth and survival, especially in poor-nutrient environment, consistent with an impact on colony formation in soft agar. Finally, daily administration of the PEPCK-M inhibitor successfully inhibited tumor growth in two murine xenograft models as compared to vehicle, without weight loss, or any sign of apparent toxicity. Conclusion: We conclude that iPEPCK-2 is a compelling anticancer drug targeting PEPCK-M, a hallmark gene product involved in metabolic adaptations of the tumor.-
dc.description.sponsorshipWe acknowledge the skillful technical support by the Scientific and Technical Services at the University of Barcelona, Bellvitge Campus, and to the “Consorci de Serveis Universitaris de Catalunya” (CSUC) for computational facilities.-
dc.subjectXanthine derivatives-
dc.subjectPEPCK inhibitors-
dc.subjectCancer metabolism-
dc.subjectBreast carcinoma-
dc.subjectColon carcinoma-
dc.subjectMitochondrial physiology-
dc.subjectInsulin secretion-
dc.titlePharmacology and preclinical validation of a novel anticancer compound targeting PEPCK-M-
Appears in Collections:(IQM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show simple item record

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.