Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/209633
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Modeling the Accretion Disk around the High-mass Protostar GGD 27-MM1

AutorAñez-López, N. CSIC ORCID; Osorio, Mayra CSIC ORCID ; Busquet, Gemma CSIC ORCID; Girart, Josep Miquel CSIC ORCID ; Macías, E.; Carrasco-González, Carlos CSIC ORCID; Curiel, Salvador; Estalella, Robert; Fernández-López, Manuel CSIC ORCID; Galván-Madrid, Roberto; Kwon, J.; Torrelles, José M. CSIC ORCID
Palabras claveStar formation
Star-forming regions
Massive stars
Protoplanetary disks
Fecha de publicación2020
EditorIOP Publishing
CitaciónAstrophysical Journal 888(1): A41 (2019)
ResumenRecent high angular resolution (≃40 mas) ALMA observations at 1.14 mm resolve a compact (R ≃ 200 au), flattened dust structure perpendicular to the HH 80-81 jet emanating from the GGD 27-MM1 high-mass protostar, making it a robust candidate for a true accretion disk. The jet-disk system (HH 80-81/GGD 27-MM1) resembles those found in association with low- A nd intermediate-mass protostars. We present radiative transfer models that fit the 1.14 mm ALMA dust image of this disk, which allow us to obtain its physical parameters and predict its density and temperature structure. Our results indicate that this accretion disk is compact (R disk ≃ 170 au) and massive (≃5 M o), at about 20% of the stellar mass of ≃20 M o. We estimate the total dynamical mass of the star-disk system from the molecular line emission, finding a range between 21 and 30 M o, which is consistent with our model. We fit the density and temperature structures found by our model with power-law functions. These results suggest that accretion disks around massive stars are more massive and hotter than their low-mass siblings, but they still are quite stable. We also compare the temperature distribution in the GGD 27-MM1 disk with that found in low- A nd intermediate-mass stars and discuss possible implications for the water snow line. We have also carried out a study of the distance based on Gaia DR2 data and the population of young stellar objects in this region and from the extinction maps. We conclude that the source distance is within 1.2 and 1.4 kpc, closer than what was derived in previous studies (1.7 kpc). © 2020. The American Astronomical Society. All rights reserved.
Versión del editorhttp://dx.doi.org/10.3847/1538-4357/ab5dbc
URIhttp://hdl.handle.net/10261/209633
DOI10.3847/1538-4357/ab5dbc
ISSN0004-637X
Aparece en las colecciones: (IAA) Artículos
(ICE) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
IAA2020_ApJ_Modeling the Accretion Disk.pdf1,35 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

18
checked on 18-mar-2024

WEB OF SCIENCETM
Citations

16
checked on 29-feb-2024

Page view(s)

186
checked on 29-mar-2024

Download(s)

115
checked on 29-mar-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.