English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/209620
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

A comparative analysis of capacity and non-capacity formulations for the simulation of unsteady flows over finite-depth erodible beds

AuthorsMartínez-Aranda, S.; Murillo, J.; García-Navarro, Pilar
KeywordsFinite volume method
Shallow water equations
Non-capacity bedload transport
Fully coupled method
Augmented Roe’s scheme
Finite-depth erodible layer
Issue DateAug-2019
PublisherElsevier
CitationAdvances in Water Resources 130: 91-112 (2019)
AbstractFinite-depth sediment layers are common in natural water bodies. The presence of underlying bedrock strata covered by erodible bed layers is ubiquitous in rivers and estuaries. In the last years, the development of models based on the non-capacity sediment transport assumption, also called non-equilibrium assumption, has offered a new theoretical background to deal with complex non-erodible bed configurations and the associated numerical problems. Bedload non-capacity sediment transport models consider that the actual solid transport state can be different from the equilibrium state and depending on the temporal evolution of the flow. The treatment of finite-depth erodible bed layers, i.e. partially erodible beds, in bedload models based on the equilibrium approach has usually been made using numerical fixes, which correct the unphysical results obtained in some cases. Generally, the presence of a finite-depth erodible layer implies the introduction of a kind of non-equilibrium condition in the bedload transport state. Nevertheless, this common natural bed configuration has not been previously considered in the development of numerical models. In this work, a finite volume model (FVM) for bedload transport based on non-capacity approach and dealing with finite-depth erodible layers is proposed. New expressions for the actual bedload transport rate and the net exchange flux through the static-moving bed layers interface are used to develop a numerical scheme which solves the coupled shallow water and non-capacity bedload transport system of equations. The reconstruction of the intermediate states for the local Riemann problem at each intercell edge is designed to correctly model the presence of non-erodible strata, avoiding the appearance of unphysical results in the approximate solution without reducing the time step. The new coupled scheme is tested against laboratory benchmarking experiments in order to demonstrate its stability and accuracy, pointing out the properties of both equilibrium and non-equilibrium formulations.
Publisher version (URL)https://doi.org/10.1016/j.advwatres.2019.06.001
URIhttp://hdl.handle.net/10261/209620
DOI10.1016/j.advwatres.2019.06.001
ISSN0309-1708
Appears in Collections:(LIFTEC) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf59,24 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.