English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/209535
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorJensen, Z-
dc.contributor.authorKim, E.-
dc.contributor.authorKwon, S.-
dc.contributor.authorGani, T.Z.H.-
dc.contributor.authorRomán-Leshkov, Y-
dc.contributor.authorMoliner Marín, Manuel-
dc.contributor.authorCorma, Avelino-
dc.contributor.authorOlivetti, E.-
dc.date.accessioned2020-04-29T07:23:13Z-
dc.date.available2020-04-29T07:23:13Z-
dc.date.issued2019-04-19-
dc.identifierdoi: 10.1021/acscentsci.9b00193-
dc.identifierissn: 2374-7951-
dc.identifier.citationACS central science 5(5): 892-899 (2019)-
dc.identifier.urihttp://hdl.handle.net/10261/209535-
dc.description.abstractZeolites are porous, aluminosilicate materials with many industrial and >green> applications. Despite their industrial relevance, many aspects of zeolite synthesis remain poorly understood requiring costly trial and error synthesis. In this paper, we create natural language processing techniques and text markup parsing tools to automatically extract synthesis information and trends from zeolite journal articles. We further engineer a data set of germanium-containing zeolites to test the accuracy of the extracted data and to discover potential opportunities for zeolites containing germanium. We also create a regression model for a zeolite's framework density from the synthesis conditions. This model has a cross-validated root mean squared error of 0.98 T/1000 Å , and many of the model decision boundaries correspond to known synthesis heuristics in germanium-containing zeolites. We propose that this automatic data extraction can be applied to many different problems in zeolite synthesis and enable novel zeolite morphologies.-
dc.description.sponsorshipWe would like to acknowledge funding from the National Science Foundation Award No. 1534340, DMREF that provided support to make this work possible, support from the Office of Naval Research (ONR) under Contract No. N00014-16-1-2432, and the MIT Energy Initiative. Early work was collaborative under the Department of Energy Basic Energy Science Program through the Materials Project under Grant No. EDCBEE. This work has also been supported by the Spanish Government through the Severo Ochoa Program SEV2016-0683 and the Grant No. MAT2015971261-R, and by La Caxia Foundation through the MIT-SPAIN SEED FUND Program (LCF/PR/MIT17/11820002)-
dc.languageeng-
dc.publisherACS Publications-
dc.relationMINECO/ICTI2013-2016/SEV-2016-0683-
dc.relationMINECO/ICTI2013-2016/MAT2015-71261-R-
dc.relation.isversionofPublisher's version-
dc.rightsopenAccess-
dc.titleA Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction-
dc.typeartículo-
dc.relation.publisherversionhttp://dx.doi.org/10.1021/acscentsci.9b00193-
dc.date.updated2020-04-29T07:23:14Z-
dc.rights.licensehttps://pubs.acs.org/page/policy/authorchoice_termsofuse.html-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
Appears in Collections:(ITQ) Artículos
Files in This Item:
File Description SizeFormat 
A Machine Learning Approach to Zeolite Synthesis... acscentsci.9b00193.pdf1,29 MBAdobe PDFThumbnail
View/Open
Show simple item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.