English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/209157
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

Title

Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction

AuthorsCastilla, Sebastián; Terrés, Bernat; Autore, Marta; Viti, Leonardo; Li, Jian; Nikitin, Alexey Y.; Vangelidis, Ioannis; Watanabe, Kenji; Taniguchi, Takashi; Lidorikis, Elefterios; Vitiello, Miriam S.; Hillenbrand, Rainer; Tielrooij, Klaas-Jan; Koppens, Frank H. L.
KeywordsPhotodetector
THz
Graphene
Antenna
Fast detection
Issue Date2019
PublisherAmerican Chemical Society
CitationNano Letters 19(5): 2765-2773 (2019)
AbstractAlthough the detection of light at terahertz (THz) frequencies is important for a large range of applications, current detectors typically have several disadvantages in terms of sensitivity, speed, operating temperature, and spectral range. Here, we use graphene as a photoactive material to overcome all of these limitations in one device. We introduce a novel detector for terahertz radiation that exploits the photothermoelectric (PTE) effect, based on a design that employs a dual-gated, dipolar antenna with a gap of ∼100 nm. This narrow-gap antenna simultaneously creates a pn junction in a graphene channel located above the antenna and strongly concentrates the incoming radiation at this pn junction, where the photoresponse is created. We demonstrate that this novel detector has an excellent sensitivity, with a noise-equivalent power of 80 pW/ at room temperature, a response time below 30 ns (setup-limited), a high dynamic range (linear power dependence over more than 3 orders of magnitude) and broadband operation (measured range 1.8–4.2 THz, antenna-limited), which fulfills a combination that is currently missing in the state-of-the-art detectors. Importantly, on the basis of the agreement we obtained between experiment, analytical model, and numerical simulations, we have reached a solid understanding of how the PTE effect gives rise to a THz-induced photoresponse, which is very valuable for further detector optimization.
Publisher version (URL)https://doi.org/10.1021/acs.nanolett.8b04171
URIhttp://hdl.handle.net/10261/209157
DOIhttp://dx.doi.org/10.1021/acs.nanolett.8b04171
ISSN1530-6984
E-ISSN1530-6992
Appears in Collections:(CIN2) Artículos
Files in This Item:
File Description SizeFormat 
fastjuncti.pdf1,63 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.