English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/209034
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Number conserving particle-hole RPA for superfluid nuclei

AuthorsDukelsky, Jorge ; García-Ramos, J.E.; Arias, J.M.; Pérez-Fernández, P. ; Schuck, P.
KeywordsNumber conserving particle-hole RPA
Number projected
Superfluid nuclei
Issue Date3-Jul-2019
PublisherElsevier BV
CitationPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics 795: 537-541 (2019)
AbstractWe present a number conserving particle-hole RPA theory for collective excitations in the transition from normal to superfluid nuclei. The method derives from an RPA theory developed long ago in quantum chemistry using antisymmetric geminal powers, or equivalently number projected HFB states, as reference states. We show within a minimal model of pairing plus monopole interactions that the number conserving particle-hole RPA excitations evolve smoothly across the superfluid phase transition close to the exact results, contrary to particle-hole RPA in the normal phase and quasiparticle RPA in the superfluid phase that require a change of basis at the broken symmetry point. The new formalism can be applied in a straightforward manner to study particle-hole excitations on top of a number projected HFB state.
Description5 pags., 3 figs.-- Open Access funded by Creative Commons Atribution Licence 4.0
Publisher version (URL)http://dx.doi.org/10.1016/j.physletb.2019.07.003
Identifiersdoi: 10.1016/j.physletb.2019.07.003
issn: 0370-2693
Appears in Collections:(CFMAC-IEM) Artículos
Files in This Item:
File Description SizeFormat 
Number conserving.pdf279,52 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.