English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/208651
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Intercellular transmission of a synthetic bacterial cytotoxic prion-like protein in mammalian cells

AuthorsRevilla-García, Aída; Fernández, Cristina; Moreno-del Álamo, María ; de los Ríos, Vivian; Vorberg, Ina M.; Giraldo, R.
KeywordsBacterial amyloidosis
Prion-like
RepA-WH1
Intercellular transmission
Proteotoxic cross-aggregation
Issue Date14-Apr-2020
PublisherAmerican Society for Microbiology
CitationmBio 11(2). pii: e02937-19 (2020)
AbstractRepA is a bacterial protein that builds intracellular amyloid oligomers acting as inhibitory complexes of plasmid DNA replication. When carrying a mutation enhancing its amyloidogenesis (A31V), the N-terminal domain (WH1) generates cytosolic amyloid particles that are inheritable within a bacterial lineage. Such amyloids trigger in bacteria a lethal cascade reminiscent of mitochondrial impairment in human cells affected by neurodegeneration. To fulfill all the criteria to qualify as a prion-like protein,horizontal (intercellular) transmissibility remains to be demonstrated for RepA-WH1.Since this is experimentally intractable in bacteria, here we transiently expressed in a murine neuroblastoma cell line the soluble, barely cytotoxic RepA-WH1 wild type [RepAWH1(WT)] and assayed its response to exposure to in vitro-assembled RepA-WH1(A31V) amyloid fibers. In parallel, murine cells releasing RepA-WH1(A31V) aggregates were cocultured with human neuroblastoma cells expressing RepA-WH1(WT). Both the assembled fibers and donor-derived RepA WH1(A31V) aggregates induced, in the cytosol of recipient cells, the formation of cytotoxic amyloid particles. Mass spectrometry analyses of the proteomes of both types of injured cells pointed to alterations in mitochondria,protein quality triage, signaling, and intracellular traffic. Thus, a synthetic prion-like protein can be propagated to, and become cytotoxic to, cells of organisms placed at such distant branches of the tree of life as bacteria and mammalia, suggesting that mechanisms of protein aggregate spreading and toxicity follow default pathways.
IMPORTANCE. Proteotoxic amyloid seeds can be transmitted between mammalian cells,arguing that the intercellular exchange of prion-like protein aggregates can be a common phenomenon. RepA-WH1 is derived from a bacterial intracellular functional amyloid protein, engineered to become cytotoxic in Escherichia coli. Here, we have studied if such bacterial aggregates can also be transmitted to, and become cytotoxic to, mammalian cells. We demonstrate that RepA-WH1 is capable of entering naive cells, thereby inducing the cytotoxic aggregation of a soluble RepA-WH1 variant expressed in the cytosol,following the same trend that had been described in bacteria. These findings highlight the universality of one of the central principles underlying prion biology: No matter the biological origin of a given prion-like protein, it can be transmitted to a phylogenetically unrelated recipient cell, provided that the latter expresses a soluble protein onto which the incoming protein can readily template its amyloid conformation.
Description18 p.-6 fig.
Publisher version (URL)https://doi.org/10.1128/mBio.02937-19
URIhttp://hdl.handle.net/10261/208651
DOI10.1128/mBio.02937-19
E-ISSN2150-7511
Appears in Collections:(CIB) Artículos
Files in This Item:
File Description SizeFormat 
mBio-2020-Revilla-García-e02937-19.full.pdfArtículo principal4,78 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.