English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/20807
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Complete classification of Minkowski vacua in generalised flux models

AutorCarlos, Beatriz de; Guarino, Adolfo ; Moreno, Jesús M.
Fecha de publicación8-feb-2010
ResumenWe present a complete and systematic analysis of the Minkowski extrema of the N=1, D=4 Supergravity potential obtained from type II orientifold models that are T-duality invariant, in the presence of generalised fluxes. Based on our previous work on algebras spanned by fluxes, and the so-called no-go theorems on the existence of Minkowski and/or de Sitter vacua, we perform a partly analytic, partly numerical analysis of the promising cases previously hinted. We find that the models contain Minkowski extrema with one tachyonic direction. Moreover, those models defined by the Supergravity algebra so(3,1)^2 also contain Minkowski/de Sitter minima that are totally stable. All Minkowski solutions, stable or not, interpolate between points in parameter space where one or several of the moduli go to either zero or infinity, the so-called singular points. We finally reinterpret our results in the language of type IIA flux models, in order to show explicitly the contribution of the different sources of potential energy to the extrema found. In particular, the cases of totally stable Minkowski/de Sitter vacua require of the presence of non-geometric fluxes.
Descripción30 pages, 11 figures, 1 table
Versión del editorhttp://arxiv.org/abs/0911.2876
URIhttp://hdl.handle.net/10261/20807
Aparece en las colecciones: (IFT) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
0911.2876v2.pdf497,84 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.