English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/20772
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Monte Carlo study of the spin-glass phase of the site-diluted dipolar Ising model

AutorAlonso, Juan J.; Fernández, Julio F.
Fecha de publicación5-feb-2010
CitaciónPhysical Review B 81(6): 064408 (2010)
ResumenBy tempered Monte Carlo simulations, we study site-diluted Ising systems of magnetic dipoles. All dipoles are randomly placed on a fraction x of all L3 sites of a simple cubic lattice, and point along a given crystalline axis. For xc<x≤1, where xc≃0.65, we find an antiferromagnetic phase below a temperature which vanishes as x→xc from above. At lower values of x, we find an equilibrium spin-glass (SG) phase below a temperature given by kBTsg≃xεd, where εd is a nearest-neighbor dipole-dipole interaction energy. We study (a) the relative mean-square deviation Δq2 of |q|, where q is the SG overlap parameter and (b) ξL/L, where ξL is a correlation length. From their variation with temperature and system size, we determine Tsg. In the SG phase,we find (i) the mean values q and q2 decrease algebraically with L as L increases, (ii) double peaked, but wide, distributions of q/ q/ appear to be independent of L, and (iii) ξL/L rises with L at constant T but extrapolations to 1/L→0 give finite values. All of this is consistent with quasilong-range order in the SG phase.
Descripción14 páginas, 15 figuras, 3 tablas.-- PACS numbers: 75.10.Nr, 75.10.Hk, 75.40.Cx, 75.50.Lk
Versión del editorhttp://dx.doi.org/10.1103/PhysRevB.81.064408
URIhttp://hdl.handle.net/10261/20772
DOI10.1103/PhysRevB.81.064408
ISSN1098-0121
E-ISSN1550-235X
Aparece en las colecciones: (ICMA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Monte Carlo study .pdf445,37 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.