English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/20657
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL

Sachs-Wolfe at second order: the CMB bispectrum on large angular scales

AutorBoubekeur, Lotfi; Creminelli, P.; D'Amico, G.; Norena, J.; Vernizzi, F.
Palabras claveCMBR theory
cosmological perturbation theory
Fecha de publicación25-ago-2009
EditorInstitute of Physics Publishing
CitaciónJournal of Cosmology and Astroparticle Physics 8 (029) (2009)
ResumenWe calculate the Cosmic Microwave Background anisotropy bispectrum on large angular scales in the absence of primordial non-Gaussianities, assuming exact matter dominance and extending at second order the classic Sachs-Wolfe result delta T/T = Phi/3. The calculation is done in Poisson gauge. Besides intrinsic contributions calculated at last scattering, one must consider integrated effects. These are associated to lensing, and to the time dependence of the potentials (Rees-Sciama) and of the vector and tensor components of the metric generated at second order. The bispectrum is explicitly computed in the flat-sky approximation. It scales as l(-4) in the scale invariant limit and the shape dependence of its various contributions is represented in 3d plots. Although all the contributions to the bispectrum are parametrically of the same order, the full bispectrum is dominated by lensing. In the squeezed limit it corresponds to f(NL)(local) = -1/6 - cos(2 theta), where theta is the angle between the short and the long modes; the angle dependent contribution comes from lensing. In the equilateral limit it corresponds to f(NL)(equil) similar or equal to 3.13.
Versión del editorhttp://dx.doi.org/10.1088/1475-7516/2009/08/029
Aparece en las colecciones: (IFIC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Sach.Wolfe.pdf1,13 MBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.