English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/206343
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Spatial and temporal variation in river corridor exchange across a 5th-order mountain stream network

AuthorsWard, Adam S.; Wondzell, Steven M.; Schmadel, Noah M.; Herzog, Skuyler; Zarnetske, Jay P.; Baranov, Viktor; Blaen, Phillip J.; Brekenfeld, Nicolai; Chu, Rosalie; Derelle, Romain; Drummond, Jennifer D. ; Fleckenstein, Jan H.; Garayburu-Caruso, Vanessa; Graham, Emily; Hannah, David; Harman, Ciaran J.; Hixson, Jase; Knapp, Julia L.A.; Krause, Stefan; Kurz, Marie J.; Lewandowski, Jörg; Li, Angang; Martí, Eugènia; Miller, Melinda; Milner, Alexander M.; Neil, Kerry; Orsini, Luisa; Packman, Aaron I.; Plont, Stephen; Renteria, Lupita; Roche, Kevin; Royer, Todd; Segura, Catalina; Stegen, James; Toyoda, Jason; Wells, Jacqueline; Wisnoski, Nathan I.
Issue Date2019
PublisherEuropean Geosciences Union
CitationHydrology and Earth System Sciences 23 : 5199–5225 (2019)
AbstractAlthough most field and modeling studies of river corridor exchange have been conducted at scales ranging from tens to hundreds of meters, results of these studies are used to predict their ecological and hydrological influences at the scale of river networks. Further complicating prediction, exchanges are expected to vary with hydrologic forcing and the local geomorphic setting. While we desire predictive power, we lack a complete spatiotemporal relationship relating discharge to the variation in geologic setting and hydrologic forcing that is expected across a river basin. Indeed, the conceptual model of Wondzell (2011) predicts systematic variation in river corridor exchange as a function of (1) variation in baseflow over time at a fixed location, (2) variation in discharge with location in the river network, and (3) local geomorphic setting. To test this conceptual model we conducted more than 60 solute tracer studies including a synoptic campaign in the 5th-order river network of the H. J. Andrews Experimental Forest (Oregon, USA) and replicate-intime experiments in four watersheds. We interpret the data using a series of metrics describing river corridor exchange and solute transport, testing for consistent direction and magnitude of relationships relating these metrics to discharge and local geomorphic setting. We confirmed systematic decrease in river corridor exchange space through the river networks, from headwaters to the larger main stem. However, we did not find systematic variation with changes in discharge through time or with local geomorphic setting. While interpretation of our results is complicated by problems with the analytical methods, the results are sufficiently robust for us to conclude that space-for-time and time-for-space substitutions are not appropriate in our study system. Finally, we suggest two strategies that will improve the interpretability of tracer test results and help the hyporheic community develop robust datasets that will enable comparisons across multiple sites and/or discharge conditions.
DescriptionEste artículo contiene 28 páginas, 6 figuras, 4 tablas.
Publisher version (URL)http://doi.org/10.5194/hess-23-5199-2019
URIhttp://hdl.handle.net/10261/206343
ISSN1027-5606
E-ISSN1607-7938
Appears in Collections:(CEAB) Artículos
Files in This Item:
File Description SizeFormat 
marti 2020.pdf7,42 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.