Please use this identifier to cite or link to this item:
http://hdl.handle.net/10261/20440
Share/Export:
![]() ![]() |
|
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE | |
Title: | Spectral evolution of superluminal components in parsec-scale jets |
Authors: | Mimica, Petar; Aloy, Miguel Ángel; Agudo, Iván CSIC ORCID ; Martí, José M.; Gómez Fernández, J. L. CSIC ORCID ; Miralles, Juan Antonio | Keywords: | Galaxies: jets Hydrodynamics Radiation mechanisms: non-thermal Relativity |
Issue Date: | Apr-2009 | Publisher: | American Astronomical Society | Citation: | Astrophysical Journal 696(2): 1142-1163 (2009) | Abstract: | We present numerical simulations of the spectral evolution and emission of radio components in relativistic jets. We have developed an algorithm (SPEV) for the transport of a population of non-thermal electrons including radiative losses. For large values of the ratio of gas pressure to magnetic field energy density, \ab \sim 6\times 10^4, quiescent jet models show substantial spectral evolution, with observational consequences only above radio frequencies. Larger values of the magnetic field (\ab \sim 6\times 10^2), such that synchrotron losses are moderately important at radio frequencies, present a larger ratio of shocked-to-unshocked regions brightness than the models without radiative losses, despite the fact that they correspond to the same underlying hydrodynamic structure. We also show that jets with a positive photon spectral index result if the lower limit \gamma_min of the non-thermal particle energy distribution is large enough. A temporary increase of the Lorentz factor at the jet inlet produces a traveling perturbation that appears in the synthetic maps as a superluminal component. We show that trailing components can be originated not only in pressure matched jets, but also in over-pressured ones, where the existence of recollimation shocks does not allow for a direct identification of such features as Kelvin-Helmholtz modes, and its observational imprint depends on the observing frequency. If the magnetic field is large (\ab \sim 6\times 10^2), the spectral index in the rarefaction trailing the traveling perturbation does not change much with respect to the same model without any hydrodynamic perturbation. If the synchrotron losses are considered the spectral index displays a smaller value than in the corresponding region of the quiescent jet model. | Description: | 27 pages, 18 figures, 1 table, 1 appendix.-- Pre-print archive. | Publisher version (URL): | http://dx.doi.org/10.1088/0004-637X/696/2/1142 | URI: | http://hdl.handle.net/10261/20440 | DOI: | 10.1088/0004-637X/696/2/1142 | ISSN: | 0004-637X |
Appears in Collections: | (IAA) Artículos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
0811.1143v2.pdf | 2,63 MB | Adobe PDF | ![]() View/Open |
Review this work
SCOPUSTM
Citations
90
checked on May 14, 2022
WEB OF SCIENCETM
Citations
88
checked on May 11, 2022
Page view(s)
500
checked on May 16, 2022
Download(s)
326
checked on May 16, 2022
Google ScholarTM
Check
Altmetric
Dimensions
WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.