English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/202967
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorJiménez Reinosa, Julián-
dc.contributor.authorMuñoz Rojo, Miguel-
dc.contributor.authorCampo, Ángel Adolfo del-
dc.contributor.authorMartín-González, Marisol-
dc.contributor.authorFernández Lozano, José Francisco-
dc.date.accessioned2020-03-06T08:56:46Z-
dc.date.available2020-03-06T08:56:46Z-
dc.date.issued2019-09-27-
dc.identifierdoi: 10.1021/acsami.9b10690-
dc.identifiere-issn: 1944-8252-
dc.identifierissn: 1944-8244-
dc.identifier.citationACS Applied Materials and Interfaces 11(42): 39254-39262 (2019)-
dc.identifier.urihttp://hdl.handle.net/10261/202967-
dc.description.abstractThe increasing threat of multidrug-resistant microorganisms is a cause of worldwide concern. This motivates a necessity to discover new antimicrobial agents or new mechanisms for microorganism eradication, different from those currently used. Here, we report an effective antibacterial ceramic glaze that combines different bactericidal mechanisms. Specifically, the used methodology of the glaze results in glass-free edge crystallizations of feldspar structures at the ceramic surface. A combination of Rutherford backscattering spectroscopy, scanning electron microscopy, and Raman microscopy is used to determine the chemical elements and crystallizations at the ceramic surface. Moreover, Kelvin probe force microscopy demonstrates that the presence of glass-free edges in feldspar needle crystals (semiconductor phase) on a glass matrix (insulator phase) promotes the formation of semiconductor-insulator interface barriers. These barriers act as reservoirs of electric charges of ∼1.5 V, producing a discharge exceeding the microorganism membrane breakdown value (up to 0.5 V). Furthermore, the surface crystallizations account for the formation of a microroughness that limits biofilm formation. Both factors result in high antibacterial activity in the range of R > 4 for Escherichia coli and Staphylococcus aureus. This approach opens new possibilities to attain bactericidal surfaces and to understand the role of physical interaction as a main antimicrobial mechanism.-
dc.description.sponsorshipThe authors acknowledege the financial support by the projects MAT2017-86450-C4-1-R and MAT2017-86450-C4-3-R.-
dc.languageeng-
dc.publisherAmerican Chemical Society-
dc.relationMICIU/ICTI2017-2020/MAT2017-86450-C4-1-R-
dc.relationMAT2017-86450-C4-1-R/AEI/10.13039/501100011033-
dc.relationMICIU/ICTI2017-2020/MAT2017-86450-C4-3-R-
dc.relationMAT2017-86450-C4-3-R/AEI/10.13039/501100011033-
dc.relation.isversionofPostprint-
dc.rightsopenAccessen_EN
dc.subjectCeramic tile-
dc.subjectAntimicrobial properties-
dc.subjectFeldspar crystallizations-
dc.subjectSurface charge-
dc.subjectPhysical mechanisms-
dc.titleHighly Efficient Antimicrobial Ceramics Based on Electrically Charged Interfaces-
dc.typeartículo-
dc.identifier.doi10.1021/acsami.9b10690-
dc.relation.publisherversionhttp://dx.doi.org/10.1021/acsami.9b10690-
dc.embargo.terms2020-09-27-
dc.date.updated2020-03-06T08:56:47Z-
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (España)-
dc.contributor.funderAgencia Estatal de Investigación (España)-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100011033es_ES
dc.contributor.orcidReinosa, Julián J. [0000-0003-1230-2236]-
dc.contributor.orcidMuñoz Rojo, Miguel [0000-0001-9237-4584]-
dc.contributor.orcidMartín-González, Marisol [0000-0002-5687-3674]-
dc.contributor.orcidFernández Lozano, José Francisco [0000-0001-5894-9866]-
Appears in Collections:(ICV) Artículos
(IMN-CNM) Artículos
Files in This Item:
File Description SizeFormat 
Highly efficient antimicrobial_JimenezReinosa_.pdf4,53 MBAdobe PDFThumbnail
View/Open
Show simple item record
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.