English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/199939
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorResquin, Francisco-
dc.contributor.authorGonzalez-Vargas, J.-
dc.contributor.authorIbáñez Pereda, Jaime-
dc.contributor.authorBrunetti, F.-
dc.contributor.authorPons Rovira, José Luis-
dc.date.accessioned2020-02-07T08:35:28Z-
dc.date.available2020-02-07T08:35:28Z-
dc.date.issued2016-
dc.identifier.citationThe European Journal of Translational Myology 26(3): 255-261 (2016)-
dc.identifier.issn2037-7452-
dc.identifier.urihttp://hdl.handle.net/10261/199939-
dc.description© The Authors.-
dc.description.abstractHybrid robotic systems represent a novel research field, where functional electrical stimulation (FES) is combined with a robotic device for rehabilitation of motor impairment. Under this approach, the design of robust FES controllers still remains an open challenge. In this work, we aimed at developing a learning FES controller to assist in the performance of reaching movements in a simple hybrid robotic system setting. We implemented a Feedback Error Learning (FEL) control strategy consisting of a feedback PID controller and a feedforward controller based on a neural network. A passive exoskeleton complemented the FES controller by compensating the effects of gravity. We carried out experiments with healthy subjects to validate the performance of the system. Results show that the FEL control strategy is able to adjust the FES intensity to track the desired trajectory accurately without the need of a previous mathematical model.-
dc.description.sponsorshipThis work has been done with the financial support of the Ministry of Science and Innovation of Spain, project HYPER (CSD 2009-00067 Hybrid Neuroprosthetic and Neurorobotic Devices for Functional Compensation and Rehabilitation of Motor Disorders).-
dc.languageeng-
dc.publisherPAGEPress-
dc.relation.isversionofPublisher's version-
dc.rightsopenAccess-
dc.subjectFeedback error learning-
dc.subjectFunctional electrical stimulation-
dc.subjectStroke-
dc.subjectUpper limb rehabilitation-
dc.subjectHybrid robotic system-
dc.titleFeedback Error Learning Controller for Functional Electrical Stimulation Assistance in a Hybrid Robotic System for Reaching Rehabilitation-
dc.typeartículo-
dc.identifier.doihttp://dx.doi.org/10.4081/ejtm.2016.6164-
dc.relation.publisherversionhttp://dx.doi.org/10.4081/ejtm.2016.6164-
dc.identifier.e-issn2037-7460-
dc.date.updated2020-02-07T08:35:29Z-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc/4.0/-
dc.contributor.funderMinisterio de Ciencia e Innovación (España)-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100004837es_ES
Appears in Collections:(IC) Artículos
Files in This Item:
File Description SizeFormat 
Feedback_Resquin_Art2016.pdf699,79 kBAdobe PDFThumbnail
View/Open
Show simple item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.