English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/199462
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


The Integrity of the Cell Wall and Its Remodeling during Heterocyst Differentiation Are Regulated by Phylogenetically Conserved Small RNA Yfr1 in Nostoc sp. Strain PCC 7120

AuthorsBrenes-Álvarez, Manuel; Vioque, Agustín ; Muro-Pastor, Alicia M.
Heterocyst differentiation
Regulatory RNAs
Small RNAs
Issue Date2020
PublisherAmerican Society for Microbiology
CitationMolecular Biology and Physiology, 11:e02599-19.(2020)
AbstractYfr1 is a strictly conserved small RNA in cyanobacteria. A bioinformatic prediction to identify possible interactions of Yfr1 with mRNAs was carried out by using the sequences of Yfr1 from several heterocyst-forming strains, including Nostoc sp. strain PCC 7120. The results of the prediction were enriched in genes encoding outer membrane proteins and enzymes related to peptidoglycan biosynthesis and turnover. Heterologous expression assays with Escherichia coli demonstrated direct interactions of Yfr1 with mRNAs of 11 of the candidate genes. The expression of 10 of them (alr2458, alr4550, murC, all4829, all2158, mraY, alr2269, alr0834, conR, patN) was repressed by interaction with Yfr1, whereas the expression of amiC2, encoding an amidase, was increased. The interactions between Yfr1 and the 11 mRNAs were confirmed by site-directed mutagenesis of Yfr1. Furthermore, a Nostoc strain with reduced levels of Yfr1 had larger amounts of mraY and murC mRNAs, supporting a role for Yfr1 in the regulation of those genes. Nostoc strains with either reduced or increased expression of Yfr1 showed anomalies in cell wall completion and were more sensitive to vancomycin than the wild-type strain. Furthermore, growth in the absence of combined nitrogen, which involves the differentiation of heterocysts, was compromised in the strain overexpressing Yfr1, and filaments were broken at the connections between vegetative cells and heterocysts. These results indicate that Yfr1 is an important regulator of cell wall homeostasis and correct cell wall remodeling during heterocyst differentiation
Publisher version (URL)https://doi.org/10.1128/mBio.02599-19.
Appears in Collections:(IBVF) Artículos
Files in This Item:
File Description SizeFormat 
e02599-19.full.pdf2,26 MBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.