English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/198169
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

Title

Increased dissolved organic carbon concentrations in peat fed UK water supplies under future climate and sulfate deposition scenarios

AuthorsXu, J.; Morris, P. J.; Lui, J.; Ledesma, José L. J.; Holden, J.
Issue Date2020
PublisherJohn Wiley & Sons
CitationWater Resources Research 56 : e2019WR025592 (2020)
AbstractPeatlands are globally‐important terrestrial carbon stores as well as regional sources of potablewater supply. Water draining from peatlands is rich in dissolved organic carbon (DOC), which can beproblematic for water treatment. However, it is unclear how future climate and sulfate deposition changesmay impact DOC in peatland‐derived potable water. The United Kingdom (UK) is a global hotspot thatconsumes 79% of all potable water derived directly from peatlands. Here, a physically‐based hydrologicalmodel and a biogeochemical organic carbon model were used to predict discharge and DOC concentrationin nine hotspots of peatland‐derived potable water use in the UK under a range of 21st century climateand sulfate deposition scenarios. These nine catchments supply 72% of all peatland‐derived water consumedin the UK and 57% of the global total, equivalent to the total domestic consumption of over 14 millionpeople. Our simulations indicate that annual discharges will decrease and that mean annual DOCconcentrations will increase under all future scenarios (by as much as 53.4% annually for the highestemissions scenario) in all catchments. Large increases (by as much as a factor of 1.6) in DOC concentrationin the 2090s over the baseline period are projected for autumn and winter, seasons when DOCconcentrations are already high in the baseline datasets such that water treatment works often reach theircapacity to cope. The total DOCflux is largely insensitive to future climate change because the projectedincrease in DOC concentration is mostly counterbalanced by the projected decrease in discharge.
DescriptionEste artículo contiene 19 páginas, 10 figuras, 2 tablas.
Publisher version (URL)https://doi.org/ 10.1029/2019WR025592
URIhttp://hdl.handle.net/10261/198169
ISSN0043-1397
E-ISSN1944-7973
Appears in Collections:(CEAB) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.