English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/197754
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

Title

Association of high microvessel αvβ3 and low PTEN with poor outcome in stage 3 neuroblastoma: rationale for using first in class dual PI3K/BRD4 inhibitor, SF1126

AuthorsErdreich-Epstein, Anat; Singh, Alok R.; Joshi, Shweta; Vega, Francisco M.; Guo, Pinzheng; Xu, Jingying; Groshen, Susan; Ye, Wei; Millard, Melissa; Campan, Mihaela; Morales, Guillermo; Garlich, Joseph R.; Laird, Peter W.; Seeger, Robert C.; Shimada, Hiroyuki; Durden, Donald L.
KeywordsAngiogenesis
Integrin αvβ3
Neuroblastoma
PI3-kinase inhibitors
BRD4
Issue Date18-Nov-2016
PublisherImpact Journals
CitationOncotarget 8(32): 52193-52210 (2017)
AbstractNeuroblastoma (NB) is the most common extracranial solid tumor in children. Our previous studies showed that the angiogenic integrin αvβ3 was increased in high-risk metastatic (stage 4) NB compared with localized neuroblastomas. Herein, we show that integrin αvβ3 was expressed on 68% of microvessels in MYCN-amplified stage 3 neuroblastomas, but only on 34% (means) in MYCN-non-amplified tumors (p < 0.001; n = 54). PTEN, a tumor suppressor involved in αvβ3 signaling, was expressed in neuroblastomas either diffusely, focally or not at all (immunohistochemistry). Integrin αvβ3 was expressed on 60% of tumor microvessels when PTEN was negative or focal, as compared to 32% of microvessels in tumors with diffuse PTEN expression (p < 0.001). In a MYCN transgenic mouse model, loss of one allele of PTEN promoted tumor growth, illustrating the potential role of PTEN in neuroblastoma pathogenesis. Interestingly, we report the novel dual PI-3K/BRD4 activity of SF1126 (originally developed as an RGD-conjugated pan PI3K inhibitor). SF1126 inhibits BRD4 bromodomain binding to acetylated lysine residues with histone H3 as well as PI3K activity in the MYCN amplified neuroblastoma cell line IMR-32. Moreover, SF1126 suppressed MYCN expression and MYCN associated transcriptional activity in IMR-32 and CHLA136, resulting in overall decrease in neuroblastoma cell viability. Finally, treatment of neuroblastoma tumors with SF1126 inhibited neuroblastoma growth in vivo. These data suggest integrin αvβ3, MYCN/BRD4 and PTEN/PI3K/AKT signaling as biomarkers and hence therapeutic targets in neuroblastoma and support testing of the RGD integrin αvβ3-targeted PI-3K/BRD4 inhibitor, SF1126 as a therapeutic strategy in this specific subgroup of high risk neuroblastoma.
Publisher version (URL)https://doi.org/10.18632/oncotarget.13386
URIhttp://hdl.handle.net/10261/197754
DOIhttp://dx.doi.org/10.18632/oncotarget.13386
E-ISSN1949-2553
Appears in Collections:(IBIS) Artículos
Files in This Item:
File Description SizeFormat 
stage_3_neuroblastoma.pdf3,28 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.