English
español
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10261/197707
Share/Impact:
Statistics |
![]() ![]() ![]() |
|
|
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE | |||
|
Title: | Uniform rectifiability and harmonic measure III: Riesz transform bounds imply uniform rectifiability of boundaries of 1-sided nta domains |
Authors: | Hofmann, Steve; Martell, José María ; Mayboroda, Svitlana |
Issue Date: | 2014 |
Publisher: | Oxford University Press |
Citation: | International Mathematics Research Notices 2014: 2702- 2729 (2014) |
Abstract: | Let $E\subset \ree$, $n\ge 2$, be a closed, Ahlfors-David regular set of dimension $n$ satisfying the ``Riesz Transform bound> $$\sup_{\eps>0}\int_E\left|\int_{\{y\in E:|x-y|>\eps\}}\frac{x-y}{|x-y|^{n+1}} \,f(y)\, dH^n(y)\right|^2 dH^n(x) \,\leq \,C \int_E|f|^2 dH^n\,.$$ Assume further that $E$ is the boundary of a domain $\Omega\subset\ree$ satisfying the Harnack Chain condition plus an interior (but not exterior) Corkscrew condition. Then $E$ is uniformly rectifiable. |
URI: | http://hdl.handle.net/10261/197707 |
DOI: | 10.1093/imrn/rnt002 |
Identifiers: | doi: 10.1093/imrn/rnt002 issn: 1687-0247 |
Appears in Collections: | (ICMAT) Artículos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
HMM-UR-Riesz.pdf | 1,25 MB | Adobe PDF | ![]() View/Open |
Show full item record
Review this work
Review this work
Related articles:
WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.