English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/197707
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Uniform rectifiability and harmonic measure III: Riesz transform bounds imply uniform rectifiability of boundaries of 1-sided nta domains

AuthorsHofmann, Steve; Martell, José María ; Mayboroda, Svitlana
Issue Date2014
PublisherOxford University Press
CitationInternational Mathematics Research Notices 2014: 2702- 2729 (2014)
AbstractLet $E\subset \ree$, $n\ge 2$, be a closed, Ahlfors-David regular set of dimension $n$ satisfying the ``Riesz Transform bound> $$\sup_{\eps>0}\int_E\left|\int_{\{y\in E:|x-y|>\eps\}}\frac{x-y}{|x-y|^{n+1}} \,f(y)\, dH^n(y)\right|^2 dH^n(x) \,\leq \,C \int_E|f|^2 dH^n\,.$$ Assume further that $E$ is the boundary of a domain $\Omega\subset\ree$ satisfying the Harnack Chain condition plus an interior (but not exterior) Corkscrew condition. Then $E$ is uniformly rectifiable.
Identifiersdoi: 10.1093/imrn/rnt002
issn: 1687-0247
Appears in Collections:(ICMAT) Artículos
Files in This Item:
File Description SizeFormat 
HMM-UR-Riesz.pdf1,25 MBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.