Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/197047
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Comparison of Six Lightning Parameterizations in CAM5 and the Impact on Global Atmospheric Chemistry

AutorGordillo Vázquez, Francisco J. CSIC ORCID ; Pérez-Invernón, Francisco J.; Huntrieser, H.; Smith, A. K.
Fecha de publicación2019
EditorAmerican Geophysical Union
CitaciónEarth and Space Science (2019)
ResumenWe present simulations performed with six lightning parameterizations implemented in the Community Atmosphere Model (CAM5). The amount of lightning-produced nitrogen oxides (LNOx) by the various schemes considered is estimated. We provide some insight on how the lightning NO injected in the atmosphere influences the global concentrations of key chemical species such as OH, HO2, H2O2, NOx, O-3, SO2, CO, and HNO3. The vertical global averaged densities of HO2, H2O2, CO, and SO2 are depleted due to lightning while those of NO, NO2, O-3, OH, and HNO3 increase. Our results indicate that the parameterizations based on the upward ice flux (ICEFLUX) exhibit the largest global and midlatitude spatial correlations (0.73 and 0.632 for ICEFLUX and 0.72 and 0.553 for cloud top height) with respect to satellite global flash rate observations. Five out of the six lightning schemes investigated exhibit larger LNOx per flash in the midlatitudes than in the tropics. In particular, it is found that the ICEFLUX midlatitude LNOx per flash exhibits the largest difference with respect to its predicted tropical LNOx per flash, in agreement with available observations. When using CAM5, the ICEFLUX lightning parameterization could be considered a reliable lightning scheme (within its intrinsic uncertainties) in terms of its geographical distribution. Both ICEFLUX and cloud top height results agree with the enhancements of NO2 and O-3 produced by lightning over tropical Atlantic and Africa and the weaker lightning background over the tropical Pacific reported by Martin et al. (2007) in the periods and locations (upper troposphere) where lightning is expected to dominate the trace gas observations.©2019. The Authors.
DescripciónThis is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.-- Data presented here are available from figshare repository (https://bit.ly/2ww816g).Alternatively, requests for data and codes used to generate figures, graphs, plots, or tables may be made to the authors F. J. G. V (vazquez@iaa.es) or F. J. P. I. (fjpi@iaa.es).
Versión del editorhttp://dx.doi.org/10.1029/2019EA000873
URIhttp://hdl.handle.net/10261/197047
DOI10.1029/2019EA000873
ISSN2333-5084
Aparece en las colecciones: (IAA) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
IAA_2019EA000873.pdf32,61 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

25
checked on 24-abr-2024

WEB OF SCIENCETM
Citations

22
checked on 19-feb-2024

Page view(s)

514
checked on 24-abr-2024

Download(s)

205
checked on 24-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons