English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/19699
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

The S-Transform and Its Inverses: Side Effects of Discretizing and Filtering

AutorSimon, Carine ; Ventosa, Sergio ; Schimmel, Martin ; Mànuel, Antoni; Gallart Muset, Josep ; Dañobeitia, Juan José ; Heldring, Alexander
Palabras claveLocal spectra
S -transforms
Time-frequency analysis
Time-frequency localization
Time-varying filters
Fecha de publicaciónoct-2007
EditorInstitute of Electrical and Electronics Engineers
CitaciónIEEE Transactions on Signal Processing 55(10): 4928-4937(2007)
ResumenThe aim of this paper is to present a study on the potential and limits of the -transform and its inverses. The S-transform is an extension of the short-time Fourier transform with characteristics of the wavelet transform. It is mostly used for time-frequency analyses. Two different inverse S-transforms have been presented in the literature. We explain why the most recent one is an approximation but a very good one. The level of approximation is calculated in this paper. We then discuss the relative merits of both inverses. A careful study enables us to show that, although both inverses are nearly exact in the infinite continuous domain, this is not true anymore in the practical finite discrete domain. Side effects are quantified, and typical examples are given. Time-frequency filtering is one of the main applications of the S-transform. We evaluate the effects that occur when using the S-transform and its inverses for filtering.
Versión del editorhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4305424&arnumber=4305459&count=40&index=18&tag=1
Aparece en las colecciones: (ICTJA) Artículos
(UTM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2007-Simon-DIST.pdf1,1 MBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.