English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/196833
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

Title

The role of fecundity and sexual selection in the evolution of size and sexual size dimorphism in New World and Old World voles (Rodentia: Arvicolinae)

AuthorsGarcía-Navas, Vicente CSIC ORCID; Bonnet, Timothée; Bonal, Raúl CSIC ORCID; Postma, Erik
Issue DateSep-2016
PublisherJohn Wiley & Sons
CitationOikos 125(9): 1250-1260 (2016)
AbstractEvolutionary ecologists dating back to Darwin (1871) have sought to understand why males are larger than females in some species, and why females are the larger sex in others. Although the former is widespread in mammals, rodents and other small mammals usually exhibit low levels of sexual size dimorphism (SSD). Here, we investigate patterns of sexual dimorphism in 34 vole species belonging to the subfamily Arvicolinae in a phylogenetic comparative framework. We address the potential role of sexual selection and fecundity selection in creating sex differences in body size. No support was found for hyperallometric scaling of male body size to female body size. We observed a marginally significant relationship between SSD and the ratio of male to female home range size, with the latter being positively related to the level of intrasexual competition for mates. This suggests that sexual selection favours larger males. Interestingly, we also found that habitat type, but not mating system, constitutes a strong predictor of SSD. Species inhabiting open habitats – where males have extensive home ranges in order to gain access to as many females as possible – exhibit a higher mean dimorphism than species inhabiting closed habitats, where females show strong territoriality and an uniform distribution preventing males to adopt a territorial strategy for gaining copulations. Nonetheless, variation in the strength of sexual selection is not the only selective force shaping SSD in voles; we also found a positive association between female size and litter size across lineages. Assuming this relationship also exists within lineages (i.e. fecundity selection on female size), this suggests an additional role for variation in the strength of fecundity selection shaping interspecific differences in female size, and indirectly in SSD. Therefore our results suggest that different selective processes act on the sizes of males and females, but because larger size is favoured in both sexes, SSD is on average relatively small.
Publisher version (URL)https://doi.org/10.1111/oik.03026
URIhttp://hdl.handle.net/10261/196833
DOIhttp://dx.doi.org/10.1111/oik.03026
ISSN0030-1299
E-ISSN1600-0706
Appears in Collections:(EBD) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.