Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/19640
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
DC FieldValueLanguage
dc.contributor.authorGómez-Gardeñes, Jesús-
dc.contributor.authorFloría, Luis Mario-
dc.contributor.authorBishop, A. R.-
dc.date.accessioned2009-12-17T09:43:42Z-
dc.date.available2009-12-17T09:43:42Z-
dc.date.issued2006-04-01-
dc.identifier.citationPhysica D: Nonlinear Phenomena 216(1): 31-43 (2006)en_US
dc.identifier.issn1359-6462-
dc.identifier.urihttp://hdl.handle.net/10261/19640-
dc.description13 pages, 9 figures.en_US
dc.description.abstractWe study the structure and stability of discrete breathers (both pinned and mobile) in two-dimensional nonlinear anisotropic Schrödinger lattices. Starting from a set of identical one-dimensional systems we develop the continuation of the localized pulses from the weakly coupled regime (strongly anisotropic) to the homogeneous one (isotropic). Mobile discrete breathers are seen to be a superposition of a localized mobile core and an extended background of two-dimensional nonlinear plane waves. This structure is in agreement with previous results on one-dimensional breather mobility. The study of the stability of both pinned and mobile solutions is performed using standard Floquet analysis. Regimes of quasi-collapse are found for both types of solutions, while another kind of instability (responsible for the discrete breather fission) is found for mobile solutions. The development of such instabilities is studied, examining typical trajectories on the unstable nonlinear manifold.en_US
dc.description.sponsorshipThe authors acknowledge F. Falo, Yu. Kivshar, R.S. Mackay and M. Peyrard for sharing thoughts, and pointing out some important references to us. JG-G and LMF are grateful to M. Johansson and B. Malomed for discussions on some issues regarding the “travelling wave” (orthodox) perspective on discrete breathers. Financial support came from MCyT (Projects No. BFM2002 00113 and FIS2005 00337), DGA and BIFI. JG-G acknowledges financial support from the MECyD through a FPU grant. Work at Los Alamos performed under the auspices of the US DoE.en_US
dc.format.extent22528 bytes-
dc.format.mimetypeapplication/msword-
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsclosedAccessen_US
dc.subjectDiscrete breathersen_US
dc.subjectIntrinsic localized modesen_US
dc.subjectNonlinear Schrödinger latticesen_US
dc.subjectCollapse phenomenaen_US
dc.titleDiscrete breathers in two-dimensional anisotropic nonlinear Schrodinger latticesen_US
dc.typeartículoen_US
dc.identifier.doi10.1016/j.physd.2005.12.017-
dc.description.peerreviewedPeer revieweden_US
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.physd.2005.12.017en_US
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairetypeartículo-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:(ICMA) Artículos
Show simple item record

SCOPUSTM   
Citations

14
checked on Jun 28, 2022

WEB OF SCIENCETM
Citations

16
checked on Jun 22, 2022

Page view(s)

318
checked on Jun 29, 2022

Google ScholarTM

Check

Altmetric

Dimensions


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.