English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/19640
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Discrete breathers in two-dimensional anisotropic nonlinear Schrodinger lattices

AutorGómez-Gardeñes, Jesús; Floría, Luis Mario; Bishop, A. R.
Palabras claveDiscrete breathers
Intrinsic localized modes
Nonlinear Schrödinger lattices
Collapse phenomena
Fecha de publicación1-abr-2006
EditorElsevier
CitaciónPhysica D: Nonlinear Phenomena 216(1): 31-43 (2006)
ResumenWe study the structure and stability of discrete breathers (both pinned and mobile) in two-dimensional nonlinear anisotropic Schrödinger lattices. Starting from a set of identical one-dimensional systems we develop the continuation of the localized pulses from the weakly coupled regime (strongly anisotropic) to the homogeneous one (isotropic). Mobile discrete breathers are seen to be a superposition of a localized mobile core and an extended background of two-dimensional nonlinear plane waves. This structure is in agreement with previous results on one-dimensional breather mobility. The study of the stability of both pinned and mobile solutions is performed using standard Floquet analysis. Regimes of quasi-collapse are found for both types of solutions, while another kind of instability (responsible for the discrete breather fission) is found for mobile solutions. The development of such instabilities is studied, examining typical trajectories on the unstable nonlinear manifold.
Descripción13 pages, 9 figures.
Versión del editorhttp://dx.doi.org/10.1016/j.physd.2005.12.017
URIhttp://hdl.handle.net/10261/19640
DOI10.1016/j.physd.2005.12.017
ISSN1359-6462
Aparece en las colecciones: (ICMA) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.