English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/19625
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Campo DC Valor Lengua/Idioma
dc.contributor.authorZlotnik, Sergio-
dc.contributor.authorFernandez, Manel-
dc.contributor.authorDíaz, P.-
dc.contributor.authorVergés, Jaume-
dc.identifier.citationPure and Applied Geophysics 165(8): 1491–1510 (2008)en_US
dc.description.abstractA non-standard new code to solve multiphase viscous thermo–mechanical problems applied to geophysics is presented. Two numerical methodologies employed in the code are described: A level set technique to track the position of the materials and an enrichment of the solution to allow the strain rate to be discontinuous across the interface. These techniques have low computational cost and can be used in standard desktop PCs. Examples of phase tracking with level set are presented in two and three dimensions to study slab detachment in subduction processes and Rayleigh–Taylor instabilities, respectively. The modelling of slab detachment processes includes realistic rheology with viscosity depending on temperature, pressure and strain rate; shear and adiabatic heating mechanisms; density including mineral phase changes and varying thermal conductivity. Detachment models show a first prolonged period of thermal diffusion until a fast necking of the subducting slab results in the break–off. The influence of several numerical and physical parameters on the detachment process is analyzed: The shear heating exerts a major influence accelerating the detachment process, reducing the onset time to one half and lubricating the sinking of the detached slab. The adiabatic heating term acts as a thermal stabilizer. If the mantle temperature follows an adiabatic gradient, neglecting this heating term must be included, otherwise all temperature contrasts are overestimated. As expected, the phase change at 410 km depth (olivine–spinel transition) facilitates the detachment process due to the increase in negative buoyancy. Finally, simple plume simulations are used to show how the presented numerical methodologies can be extended to three dimensions.en_US
dc.description.sponsorshipThis research has been supported by Ministerio de Educacio´n y Ciencia, Grants DPI2007-62395, SAGAS CTM2005-08071-C03-03/MAR and the Spanish Team η1/η2 = 0.01, h = 1/3 η1/η2 = 100, h = 1/3 η1/η2 = 1, h = 0. 1 η1/η2 = 1, h = 0.05 (a) (b) (c) (d) Figure 8 Two snapshots of the evolution of four different Rayleigh–Taylor instabilities. The viscosity ratios and thickness h of the lower layer determines the shape of the plume. 1508 Sergio Zlotnik et al. Pure appl. geophys., Consolider-Ingenio 2010 nrCSD2006-00041. We thank Vlad Manea and an anonymous reviewer for discussion and commentsen_US
dc.format.extent1913829 bytes-
dc.subjectTectonic platesen_US
dc.subjectNumerical modellingen_US
dc.subjectEXtended Finite Element Method (X–FEM)en_US
dc.titleModelling Gravitational Instabilities: Slab Break–off and Rayleigh–Taylor Diapirismen_US
dc.description.peerreviewedPeer revieweden_US
Aparece en las colecciones: (ICTJA) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Show simple item record

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.