English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/19625
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 10 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Modelling Gravitational Instabilities: Slab Break–off and Rayleigh–Taylor Diapirism

AutorZlotnik, Sergio ; Fernandez, Manel ; Díaz, P.; Vergés, Jaume
Palabras claveTectonic plates
Subduction
Numerical modelling
EXtended Finite Element Method (X–FEM)
Fecha de publicaciónoct-2008
EditorSpringer
CitaciónPure and Applied Geophysics 165(8): 1491–1510 (2008)
ResumenA non-standard new code to solve multiphase viscous thermo–mechanical problems applied to geophysics is presented. Two numerical methodologies employed in the code are described: A level set technique to track the position of the materials and an enrichment of the solution to allow the strain rate to be discontinuous across the interface. These techniques have low computational cost and can be used in standard desktop PCs. Examples of phase tracking with level set are presented in two and three dimensions to study slab detachment in subduction processes and Rayleigh–Taylor instabilities, respectively. The modelling of slab detachment processes includes realistic rheology with viscosity depending on temperature, pressure and strain rate; shear and adiabatic heating mechanisms; density including mineral phase changes and varying thermal conductivity. Detachment models show a first prolonged period of thermal diffusion until a fast necking of the subducting slab results in the break–off. The influence of several numerical and physical parameters on the detachment process is analyzed: The shear heating exerts a major influence accelerating the detachment process, reducing the onset time to one half and lubricating the sinking of the detached slab. The adiabatic heating term acts as a thermal stabilizer. If the mantle temperature follows an adiabatic gradient, neglecting this heating term must be included, otherwise all temperature contrasts are overestimated. As expected, the phase change at 410 km depth (olivine–spinel transition) facilitates the detachment process due to the increase in negative buoyancy. Finally, simple plume simulations are used to show how the presented numerical methodologies can be extended to three dimensions.
Versión del editorhttp://www.springerlink.com/content/nqm813534v04617j/?p=8de489ce7e3249a28bf3531d05b8cdbeπ=2
URIhttp://hdl.handle.net/10261/19625
DOI10.1007/s00024-004-0386-9
ISSN0033-4553
Aparece en las colecciones: (ICTJA) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.