Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/195949
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Mapping local and global variability in plant trait distributions

AutorButler, Ethan E.; Datta, Abhirup; Flores-Moreno, Habacuc; Chen, Min; Wythers, Kirk R.; Fazayeli, Farideh; Banerjee, Arindam; Atkin, Owen K.; Kattge, Jens; Amiaudi, Bernard; Blonder, Benjamin; Boenisch, Gerhard; Bond-Lamberty, Ben; Brown, Kerry A.; Byun, Chaeho; Campetellan, Giandiego; Cerabolini, Bruno E. L.; Cornelissen, Johannes H. C.; Craine, Joseph M.; Craven, Dylan; Vries, Franciska T. de; Díaz, Sandra; Domingues, Tomas F.; Forey, Estelle; González-Melo, Andrés; Gross, Nicolas; Han, Wenxuan; Hattingh, Wesley N.; Hickler, Thomas; Jansen, Steven; Kramer, Koen; Kraft, Nathan J. B.; Kurokawa, Hiroko; Laughlin, Daniel C.; Meir, Patrick; Minden, Vanessa; Niinemets, Ülo; Onoda, Yusuke; Peñuelas, Josep CSIC ORCID ; Read, Quentin; Sack, Lawren; Schampt, Brandon; Soudzilovskaia, Nadejda A.; Spasojevic, Marko J.; Sosinsk, Enio; Thornton, Peter E.; Valladares Ros, Fernando CSIC ORCID ; Van Bodegom, Peter; Williams, Mathew; Wirth, Christian; Reich, Peter B.
Palabras claveSpatial statistics
Bayesian modelling
Plant traits
Climate
Global
Fecha de publicación19-dic-2017
EditorNational Academy of Sciences (U.S.)
CitaciónProceedings of the National Academy of Sciences of the United States of America 114(51): E10937-E10946 (2017)
ResumenOur ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration—specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm), we characterize how traits vary within and among over 50,000 ∼50×50-km cells across the entire vegetated land surface. We do this in several ways—without defining the PFT of each grid cell and using 4 or 14 PFTs; each model’s predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.
Versión del editorhttps://doi.org/10.1073/pnas.1708984114
URIhttp://hdl.handle.net/10261/195949
DOI10.1073/pnas.1708984114
ISSN0027-8424
E-ISSN1091-6490
Aparece en las colecciones: (MNCN) Artículos
(CREAF) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

28
checked on 22-mar-2024

SCOPUSTM   
Citations

156
checked on 21-mar-2024

WEB OF SCIENCETM
Citations

133
checked on 24-feb-2024

Page view(s)

279
checked on 27-mar-2024

Download(s)

43
checked on 27-mar-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.