English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/1944
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

A proposal for a new specification for a conditionally heteroskedastic variance model: the Quadratic Moving-Average Conditional Heteroskedasticity and an application to the D. Mark-U.S. dollar Exchange Rate

AutorVentosa, Daniel
Palabras claveConditionally heteroskedastic models
Quadratic Moving Average Conditionally heteroskedasticity model
Homoskedasticity tests
Volatility
Truncated Volterra developments
Fecha de publicación2002
SerieUFAE and IAE Working Papers
513.02
ResumenEver since the appearance of the ARCH model [Engle(1982a)], an impressive array of variance specifications belonging to the same class of models has emerged [i.e. Bollerslev's (1986) GARCH; Nelson's (1990) EGARCH]. This recent domain has achieved very successful developments. Nevertheless, several empirical studies seem to show that the performance of such models is not always appropriate [Boulier(1992)]. In this paper we propose a new specification: the Quadratic Moving Average Conditional heteroskedasticity model. Its statistical properties, such as the kurtosis and the symmetry, as well as two estimators (Method of Moments and Maximum Likelihood) are studied. Two statistical tests are presented, the first one tests for homoskedasticity and the second one, discriminates between ARCH and QMACH specification. A Monte Carlo study is presented in order to illustrate some of the theoretical results. An empirical study is undertaken for the DM-US exchange rate.
URIhttp://hdl.handle.net/10261/1944
Aparece en las colecciones: (IAE) Informes y documentos de trabajo
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
51302.pdf851,04 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.