Please use this identifier to cite or link to this item:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

LOFAR Discovery of a Radio Halo in the High-redshift Galaxy Cluster PSZ2 G099.86+58.45

AuthorsCassano, R.; Botteon, A.; Di Gennaro, G.; Brunetti, G.; Sereno, M.; Shimwell, T.W.; Van Weeren, R.J.; Brüggen, M.; Gastaldello, F.; Izzo, L.; Birzan, L.; Bonafede, A.; Cuciti, V.; De Gasperin, F.; Röttgering, H.J.A.; Hardcastle, M.; Mechev, A.P.; Tasse, C.
KeywordsX-rays: galaxies: clusters
Largescale structure of universe
Galaxies: clusters: individual (PSZ2 G099.86+58.45)
Galaxies: clusters: intracluster medium
Radiation mechanisms: non-thermal
Issue Date2019
PublisherIOP Publishing
CitationThe Astrophysical Journal 881(1): L18 (2019)
AbstractIn this Letter, we report the discovery of a radio halo in the high-redshift galaxy cluster PSZ2 G099.86+58.45 (z = 0.616) with the LOw Frequency ARray (LOFAR) at 120-168 MHz. This is one of the most distant radio halos discovered so far. The diffuse emission extends over ∼1 Mpc and has a morphology similar to that of the X-ray emission as revealed by XMM-Newton data. The halo is very faint at higher frequencies and is barely detected by follow-up 1-2 GHz Karl G. Jansky Very Large Array observations, which enable us to constrain the radio spectral index to be α ≲ 1.5-1.6, i.e., with properties between canonical and ultra-steep spectrum radio halos. Radio halos are currently explained as synchrotron radiation from relativistic electrons that are re-accelerated in the intracluster medium by turbulence driven by energetic mergers. We show that in such a framework radio halos are expected to be relatively common at ∼150 MHz (∼30%-60%) in clusters with mass and redshift similar to PSZ2 G099.86+58.45; however, at least two-thirds of these radio halos should have a steep spectrum and thus be very faint above ∼1 GHz frequencies. Furthermore, because the luminosity of radio halos at high redshift depends strongly on the magnetic field strength in the hosting clusters, future LOFAR observations will also provide vital information on the origin and amplification of magnetic fields in galaxy clusters.© 2019. The American Astronomical Society. All rights reserved.
Publisher version (URL)
Identifiersdoi: 10.3847/2041-8213/ab32ed
issn: 2041-8213
Appears in Collections:(IAA) Artículos

Files in This Item:
File Description SizeFormat
IAA_2019_ApJ_Izzo.pdf1,62 MBAdobe PDFThumbnail
Show full item record
Review this work

Google ScholarTM




WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.