Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/193810
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Shallow size–density relations within mammal clades suggest greater intra‐guild ecological impact of large‐bodied species

AutorOstergaard Pedersen, Rasmus; Faurby, Søren CSIC ORCID; Svenning, Jens-Christian
Palabras claveBody size
Allometry
Cope's rule
Energetic equivalence
Evolution
Intra‐guild competition
Mammals
Fecha de publicaciónsep-2017
EditorJohn Wiley & Sons
CitaciónJournal of Animal Ecology 86(5): 1205-1213 (2017)
ResumenPopulation densities of species have a predictable relationship with their body mass on a global scale. This relationship is known as the size–density relationship (SDR). The relationship was originally found to be directly opposite of metabolic rate scaling, which led to the hypothesis of energetic equivalence. However, recent studies have suggested that the SDR varies between clades. Specifically, the SDR for certain mammal clades has been found to be less negative than the relationship across all mammals. The aim of the present study is to estimate phylogenetic variation in the scaling relationship, using a data-driven identification of natural phylogenetic substructure in the body size–density relation, and discuss its potential drivers. The classic model is often used to estimate natural population densities, and a further, practical aim is to improve it by incorporating variability among phylogenetic groups. We expand the model for the SDR relation of mammals to include clade-specific variation. We used a dataset with population and body mass estimates of 924 terrestrial mammal species, covering 97 families, and applied an algorithm identifying group-specific changes in the relationship across a family-level phylogeny. We show increased performance in species density estimation is achieved by incorporating clade-specific changes in the relationship compared to the classic model (increasing r from.56 to.74 and ΔAIC = 466). While the global SDR across clades was confirmed to be similar to previous findings (r = −.74), the relationship within all sub-clades was less negative than the overall trend. Our results show that data-driven identification of phylogenetic substructure in the size–density relation substantially improves predictive accuracy of the model. The less negative relationship within clades compared to the overall trend and compared to within clade metabolic scaling suggest that the energetic equivalence rule does not hold. This relationship shows that large species within clades use proportionally more energy than smaller species. Therefore, our results are consistent with a greater intra-guild ecological impact of large-bodied species via partial monopolisation of resources by the largest species of a given guild, and hence size-asymmetric intra-guild competition.
Versión del editorhttps://doi.org/10.1111/1365-2656.12701
URIhttp://hdl.handle.net/10261/193810
DOI10.1111/1365-2656.12701
ISSN0021-8790
E-ISSN1365-2656
Aparece en las colecciones: (MNCN) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

19
checked on 21-abr-2024

WEB OF SCIENCETM
Citations

19
checked on 20-feb-2024

Page view(s)

183
checked on 24-abr-2024

Download(s)

26
checked on 24-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.