English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/19349
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Synthesis and ligand properties towards gold and silver of the ferrocenylamidobenzimidazole ligand

AuthorsCalhorda, Maria José; Costa, Paulo J.; Martinho, Paulo N.; Gimeno, M. Concepción ; Laguna, Antonio ; Quintal, Susana; Villacampa, M. Dolores
Issue Date1-Oct-2006
CitationJournal of Organometallic Chemistry 691(20): 4181-4188 (2006)
AbstractThe treatment of FcCOCl (Fc = (C5H5)Fe(C5H4)) with aminobenzimidazole in 1:1 or 2:1 ratio gives the ferrocenyl-amido derivatives FcCO(benzimNH2) or (FcCO)2(NHbenzim), respectively. The reactivity of FcCO(benzimNH2) with silver or gold complexes has been studied. The reaction with the basic gold compounds [Au(acac)(PPh3)] or [O(AuPPh3)3]ClO4 occurs with deprotonation of the NH2 group and coordination of one or three gold(phosphine) fragments. The treatment of this ligand with silver compounds, such as Ag(OTf) or [Ag(OTf)(PPh3)], gives the complexes of stoichiometry [Ag(OTf)L] or [Ag(OTf)(PPh3)L]. The ligand FcCO(benzimNH2) and the complex [Ag(OTf){FcCO(benzimNH2)}(PPh3)] have been characterized by X-ray diffraction studies. DFT calculations were performed on models of this dimeric silver complex and showed that dimerization is energetically favourable, because Ag(I) achieves a four coordination environment, despite some bonds being relatively weak.
Description8 pages, 4 figures, 5 tables.
Publisher version (URL)http://dx.doi.org/10.1016/j.jorganchem.2006.06.025
Appears in Collections:(ICMA) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.