Please use this identifier to cite or link to this item:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Symmetry Energy and Its Components in Finite Nuclei

AuthorsAntonov, A. N.; Gaidarov, M. K.; Kadrev, D. N.; Sarriguren, Pedro CSIC ORCID; Moya de Guerra, Elvira ORCID
Issue Date2018
PublisherIOP Publishing
CitationJournal of Physics: Conference Series 1023: 012014 (2018)
AbstractWe derive the volume and surface components of the nuclear symmetry energy (NSE) and their ratio within the coherent density fluctuation model. The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner and Skyrme energy-density functionals for nuclear matter. The obtained values of the volume and surface contributions to the NSE and their ratio for the Ni, Sn, and Pb isotopic chains are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, and excitation energies to isobaric analog states (IAS). Apart from the density dependence investigated in our previous works, we study also the temperature dependence of the symmetry energy in finite nuclei in the framework of the local density approximation combining it with the self-consistent Skyrme-HFB method using the cylindrical transformed deformed harmonic-oscillator basis. The results for the thermal evolution of the NSE in the interval T=0¿4 MeV show that its values decrease with temperature. The investigations of the T-dependence of the neutron and proton root-mean-square radii and the corresponding neutron skin thickness point out that the effect of temperature leads mainly to a substantial increase of the neutron radii and skins, especially in nuclei which are more rich of neutrons.
Description8 pags., 3 figs. -- Open Access funded by Creative Commons Atribution Licence 3.0 .-- XXII International School on Nuclear Physics, Neutron Physics and Applications
Publisher version (URL)
Identifiersdoi: 10.1088/1742-6596/1023/1/012014
issn: 1742-6588
Appears in Collections:(CFMAC-IEM) Artículos

Files in This Item:
File Description SizeFormat
Antonov_2018_J._Phys.__Conf._Ser._1023_012014.pdf454,03 kBAdobe PDFThumbnail
Show full item record
Review this work

Page view(s)

checked on Jul 5, 2022


checked on Jul 5, 2022

Google ScholarTM




WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.