Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/193288
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Engineering of a fungal laccase to develop a robust, versatile and highly-expressed biocatalyst for sustainable chemistry

AutorSalas, Felipe de CSIC ORCID ; Aza, Pablo CSIC ORCID ; Gilabert, Joan F.; Santiago, Gerard; Kiliç, Sibel; Sener, Mehmet E.; Vind, Jesper; Guallar, Victor; Martínez, Ángel T. CSIC ORCID ; Camarero, Susana CSIC ORCID
Palabras claveDirected evolution
Melanocarpus-albomyces
Catalytic-properties
Molecular-cloning
Crystal-structure
C-terminus
Stability
Mutagenesis
Fecha de publicación7-oct-2019
EditorRoyal Society of Chemistry (UK)
CitaciónGreen Chem 21(19): 5374-5385 (2019)
ResumenFungal laccases can play an important role as biocatalysts in organic chemistry to replace chemical synthesis. In a previous work we synthesized conductive polyaniline using a high-redox potential laccase from our collection of recombinant fungal variants. Still, the oxidation of aniline is hindered by the reaction conditions (low pH and presence of anionic surfactants). Thus, we tackle here the directed evolution of the enzyme assisted by computational simulation aiming at improving aniline oxidation at the required polymerization conditions while maintaining the enzyme's substrate promiscuity. Simultaneously, its secretion by the host used for the engineering (Saccharomyces cerevisiae) was enhanced. Then, the improved laccase variant was overproduced in the industrial host Aspergillus oryzae and assayed for one-pot synthesis of polyaniline and naphtol-derived dyes whose textile dyeing properties were verified in an industrial environment. Finally, modification of its C-terminal tail further enhanced laccase stability by flexibilization of the region. The resulting biocatalyst displays noticeable stability at high temperature and extreme pH while shows improved k(cat) values on the different substrates tested. Moreover, it is remarkably produced in S. cerevisiae at rates not formerly reported in the literature. These facts, together with the overexpression in A. oryzae opens new scenarios for its further development and application.
Descripción12 p.-12 fig.-1 tab.
Versión del editorhttps://doi.org/10.1039/c9gc02475a
URIhttp://hdl.handle.net/10261/193288
DOI10.1039/c9gc02475a
ISSN1463-9262
E-ISSN1463-9270
Aparece en las colecciones: (CIB) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Green Chemistry_de Salas F._2019.pdf4,6 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

37
checked on 20-abr-2024

WEB OF SCIENCETM
Citations

32
checked on 24-feb-2024

Page view(s)

298
checked on 22-abr-2024

Download(s)

237
checked on 22-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons