English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/193176
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


To what extent are bryophytes efficient dispersers?

AuthorsVanderpoorten, Alain; Patiño, Jairo; Désamoré, Aurélie; Laenen, Benjamin; Górski, Piotr; Papp, Beata; Holá, Eva; Korpelainen, Helena; Hardy, Olivier
Spatial genetic structure
Inverse isolation hypothesis
Long‐distance dispersal
Issue Date19-Aug-2019
PublisherBritish Ecological Society
CitationJournal of Ecology 107(5): 2149-2154 (2019)
AbstractBryophytes are typically seen as extremely efficient dispersers. Experimental evidence suggests that efficient short-distance dispersal coupled with random long-distance dispersal (LDD) leads to an inverse isolation effect. Under the latter, a higher genetic diversity of colonizing propagules is expected with increasing isolation, counteracting differentiation beyond the range of short-distance dispersal. This expectation is tested from a review of evidence on spatial genetic structure and analyses of isolation-by-distance (IBD) at different scales. A decay of the IBD signal, characterized by non-significant slopes between kinship coefficients and geographic distance was observed beyond 100 m. A second slope shift was observed at distances larger than 1 km, with a proportion of significant slopes in more than one third of the datasets. The decay of the IBD signal beyond 100 m, which reflects efficient LDD, is consistent with the inverse isolation hypothesis. Persistence of a significant IBD signal at medium ranges in one third of the analysed cases suggests, however, that the inverse isolation effect is not a rule in bryophyte spore dispersal. Furthermore, the higher proportion of significant IBD patterns observed at scales over 100 km likely marks the limits of regional dispersal, beyond which an increasingly smaller proportion of spores travel. Synthesis. We discuss the differences between experimental and genetic estimates of spore dispersal and conclude that geographic distance remains a significant proxy of spore colonization rates, with major consequences for our understanding of actual migration capacities in bryophytes, and hence, our capacity to model range shifts in a changing world.
Publisher version (URL)https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/1365-2745.13161
Identifiersdoi: 10.1111/1365-2745.13161
e-issn: 1365-2745
issn: 0022-0477
Appears in Collections:(IPNA) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.