Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/192644
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Combined sorbent and catalyst material for sorption enhanced reforming of methane under cyclic regeneration in presence of H2O and CO2

AutorDi Felice, Luca; Kazi, Saima Sultana; Sørby, Magnus H.; Martínez Berges, Isabel; Grasa Adiego, Gemma CSIC ORCID ; Maury, Delphine; Meyer, Julien
Palabras claveH2 production
Sorption enhanced reforming
CaO-based CO2 sorbent
Ni-based reforming catalyst
Composite materials
Process intensification
Fecha de publicación8-nov-2018
EditorElsevier
CitaciónFuel Processing Technology 183: 35-47 (2018)
ResumenAn investigation on an innovative calcium‑nickel Combined Sorbent and Catalyst Material (CSCM) for Sorption Enhanced Reforming (SER) of methane is presented in this paper. After hydrothermal synthesis, a nominal 30 wt% CaO-based sorbent supported on mayenite was physically mixed with a commercial reforming catalyst and granulated to obtain bifunctional particles of 200–300 μm. Materials were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller surface analysis (BET) and Mercury- intrusion prosimetry (Hg-porosimetry). A novel thermo-gravimetric analysis (TGA) approach was employed for investigating SER activity, particularly the materials performance during multicycling methane reforming and sorbent carbonation followed by regeneration in oxidative atmosphere – either in the presence of steam or CO2 at high temperature. When regeneration is carried out in 100 vol% CO2 at 925 °C, an intermediate reduction step between cycles was crucial to maintain the catalytic activity of the CSCM for 100 consecutive sorption-regeneration cycles. In spite of a stable catalytic activity, the initial sorption capacity of the CSCM sorbent function (~16gCO2/100gCSCM) declined progressively with cyclic runs and stabilized at ~10gCO2/100gCSCM from cycle 90 onwards. This decline in capacity has been related to CaO depletion by solid phase reaction with the catalyst support.
Descripción10 Figuras.- 2 Tablas.- 7 Extras
Versión del editorhttp://dx.doi.org/10.1016/j.fuproc.2018.10.012
URIhttp://hdl.handle.net/10261/192644
DOI10.1016/j.fuproc.2018.10.012
ISSN0378-3820
Aparece en las colecciones: (ICB) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
ARCHIVO COMODIN DIGITAL CSIC.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Fuel Pro Tech 183 35-47 (2018)_info sup1.pdfInformación suplementaria40,86 kBAdobe PDFVista previa
Visualizar/Abrir
Fuel Pro Tech 183 35-47 (2018)_info sup2.pdfInformación suplementaria343,05 kBAdobe PDFVista previa
Visualizar/Abrir
Fuel Pro Tech 183 35-47 (2018)_info sup3.pdfInformación suplementaria272,37 kBAdobe PDFVista previa
Visualizar/Abrir
Fuel Pro Tech 183 35-47 (2018)_info sup4.pdfInformación suplementaria12,92 kBAdobe PDFVista previa
Visualizar/Abrir
Fuel Pro Tech 183 35-47 (2018)_info sup5.pdfInformación suplementaria12,78 kBAdobe PDFVista previa
Visualizar/Abrir
Fuel Pro Tech 183 35-47 (2018)_info sup6.pdfInformación suplementaria5,89 kBAdobe PDFVista previa
Visualizar/Abrir
Fuel Pro Tech 183 35-47 (2018)_info sup7.pdfInformación suplementaria5,16 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

23
checked on 31-mar-2024

WEB OF SCIENCETM
Citations

22
checked on 20-feb-2024

Page view(s)

270
checked on 19-abr-2024

Download(s)

369
checked on 19-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.