English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/19146
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Long-term changes in spatial patterns of emergent vegetation in a Mediterranean floodplain: natural versus anthropogenic constraints

AuthorsÁlvarez Cobelas, Miguel ; Sánchez Carrillo, Salvador ; Cirujano, Santos ; Angeler, D. G.
KeywordsPlant cover
Spatial statistics
Water depth
Water quality
Biological traits
Issue Date2007
PublisherSpringer
CitationPlant Ecology (2007)
AbstractThis study describes the long-term changes of spatial patterns of cut-sedge (Cladium mariscus) and common reed (Phragmites australis) in the Spanish floodplain wetland Las Tablas de Daimiel. Using seven sets of aerial photographs, we determined changes in their spatial patterns (size of patches) between 1945 and 2001 that resulted from combinations of natural change and anthropogenic stress (irrigated agriculture, waste water discharge, fire, ploughing). Our approach consisted in using 1 ha cells as units of spatial resolution in principal coordinates of neighbour matrices and spatial correlograms to assess the spatial scale of interest and spatial patterns at (1) the whole wetland and (2) two areas of the wetland with locally contrasting biophysical settings and anthropogenic stress history. Results showed that vegetation spatial patterns were influenced by natural variability until the 1970s. Thereafter, anthropogenic perturbation became the main driver of vegetation change, especially in the lower part of the wetland where local impacts were stronger. Natural variability did not fragment cut-sedge patches, and the effects of biological traits were less important for its spatial pattern. By contrast, man-made change resulted in a marked cut-sedge cover decrease and patch fragmentation, and the importance of its biological traits on spatial patterns increased. The trends of reed spatial patterns were generally opposite to, but not as clear as those for, cut-sedge. The trends of spatial patterns were especially evident at very broad (3,500–10,000 m) and broad (1,000–3,400 m) spatial scales. Competition for space and abiotic factors (water quality and water depth) were not strong predictors of cover variability at the 1-ha scale, particularly in the lower area of the wetland. This suggests that other environmental variables need to be considered in spatially explicit modelling of vegetation spatial patterns in wetlands. Consideration of spatial hierarchies and species-specific ecological traits is paramount to the conservation of degraded wetlands.
Description14 pages, and tables statistics.
Publisher version (URL)http://dx.doi.org/10.1007/s11258-007-9289-6
URIhttp://hdl.handle.net/10261/19146
DOI10.1007/s11258-007-9289-6
ISSN1385-0237
Appears in Collections:(IRN) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.