English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/1912
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : Likelihood-Based Approaches to Modeling Demand for Medical Care
Autor : Creel, Michael; Farell, Montserrat
Palabras clave : Health care demand
Count data
Maximum likelihood
Fecha de publicación : 5-oct-2001
Serie : UFAE and IAE Working Papers
498.01
Resumen: We review recent likelihood-based approaches to modeling demand for medical care. A semi-nonparametric model along the lines of Cameron and Johansson's Poisson polynomial model, but using a negative binomial baseline model, is introduced. We apply these models, as well a semiparametric Poisson, hurdle semiparametric Poisson, and finite mixtures of negative binomial models to six measures of health care usage taken from the Medical Expenditure Panel survey. We conclude that most of the models lead to statistically similar results, both in terms of information criteria and conditional and unconditional prediction. This suggests that applied researchers may not need to be overly concerned with the choice of which of these models they use to analyze data on health care demand.
URI : http://hdl.handle.net/10261/1912
Aparece en las colecciones: (IAE) Informes y documentos de trabajo
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
49801.pdf279,53 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.