Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/190193
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

The ancient phosphatidylinositol 3-kinase signaling system is a master regulator of energy and carbon metabolism in algae

AutorRamanan, Rishiram; Tran, Quynh-Giao; Cho, Dae-Hyun; Jung, Jae-Eun; Kim, Byung-Hyuk; Shin, Sang-Yoon; Choi, Sae-Hae; Liu, Kwang-Hyeon; Kim, Dae-Soo; Lee, Seon-Jin; Crespo, José L. CSIC ORCID ; Lee, Hee-Gu; Oh, Hee-Mock; Kim, Hee-Sik
Fecha de publicaciónjul-2018
EditorAmerican Society of Plant Biologists
CitaciónPlant Physiology 177: 1050-1065 (2018)
ResumenAlgae undergo a complete metabolic transformation under stress by arresting cell growth, inducing autophagy and hyperaccumulating biofuel precursors such as triacylglycerols and starch. However, the regulatory mechanisms behind this stress-induced transformation are still unclear. Here, we use biochemical, mutational, and “omics” approaches to demonstrate that PI3K signaling mediates the homeostasis of energy molecules and influences carbon metabolism in algae. In Chlamydomonas reinhardtii, the inhibition and knockdown (KD) of algal class III PI3K led to significantly decreased cell growth, altered cell morphology, and higher lipid and starch contents. Lipid profiling of wild-type and PI3K KD lines showed significantly reduced membrane lipid breakdown under nitrogen starvation (-N) in the KD. RNA-seq and network analyses showed that under -N conditions, the KD line carried out lipogenesis rather than lipid hydrolysis by initiating de novo fatty acid biosynthesis, which was supported by tricarboxylic acid cycle down-regulation and via acetyl-CoA synthesis from glycolysis. Remarkably, autophagic responses did not have primacy over inositide signaling in algae, unlike in mammals and vascular plants. The mutant displayed a fundamental shift in intracellular energy flux, analogous to that in tumor cells. The high free fatty acid levels and reduced mitochondrial ATP generation led to decreased cell viability. These results indicate that the PI3K signal transduction pathway is the metabolic gatekeeper restraining biofuel yields, thus maintaining fitness and viability under stress in algae. This study demonstrates the existence of homeostasis between starch and lipid synthesis controlled by lipid signaling in algae and expands our understanding of such processes, with biotechnological and evolutionary implications.
Versión del editorhttps://doi.org/10.1104/pp.17.01780
URIhttp://hdl.handle.net/10261/190193
DOI10.1104/pp.17.01780
ISSN0032-0889
E-ISSN1532-2548
Aparece en las colecciones: (IBVF) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

5
checked on 20-abr-2024

SCOPUSTM   
Citations

16
checked on 24-abr-2024

WEB OF SCIENCETM
Citations

15
checked on 23-feb-2024

Page view(s)

186
checked on 24-abr-2024

Download(s)

26
checked on 24-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.