Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/190096
COMPARTIR / EXPORTAR:
logo OpenAIRE logo OpenAIRE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
logo citeas Pérez-Ruiz, J. M., Naranjo, B., Ojeda, V., Guinea, M., & Cejudo, F. J. (2017, October 24). NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus. Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences. http://doi.org/10.1073/pnas.1706003114
Invitar a revisión por pares abierta logo European Open Science Cloud - EU Node   

Título

NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus

AutorPérez-Ruiz, Juan Manuel CSIC ORCID ; Naranjo, Belén CSIC ORCID; Ojeda, Valle; Guinea, Manuel CSIC; Cejudo, Francisco Javier CSIC ORCID
FinanciadoresEuropean Commission
Ministerio de Economía y Competitividad (España)
Palabras claveThioredoxin
Redox signaling
Chloroplast
Peroxiredoxin
NTRC
Fecha de publicación7-nov-2017
EditorNational Academy of Sciences (U.S.)
CitaciónProceedings of the National Academy of Sciences of the USA 114(45): 12069-12074 (2017)
ResumenThiol-dependent redox regulation allows the rapid adaptation of chloroplast function to unpredictable changes in light intensity. Traditionally, it has been considered that chloroplast redox regulation relies on photosynthetically reduced ferredoxin (Fd), thioredoxins (Trxs), and an Fd-dependent Trx reductase (FTR), the Fd-FTR-Trxs system, which links redox regulation to light. More recently, a plastid-localized NADPH-dependent Trx reductase (NTR) with a joint Trx domain, termed NTRC, was identified. NTRC efficiently reduces 2-Cys peroxiredoxins (Prxs), thus having antioxidant function, but also participates in redox regulation of metabolic pathways previously established to be regulated by Trxs. Thus, the NTRC, 2-Cys Prxs, and Fd-FTR-Trxs redox systems may act concertedly, but the nature of the relationship between them is unknown. Here we show that decreased levels of 2-Cys Prxs suppress the phenotype of the Arabidopsis thaliana ntrc KO mutant. The excess of oxidized 2-Cys Prxs in NTRC-deficient plants drains reducing power from chloroplast Trxs, which results in low efficiency of light energy utilization and impaired redox regulation of Calvin–Benson cycle enzymes. Moreover, the dramatic phenotype of the ntrc-trxf1f2 triple mutant, lacking NTRC and f-type Trxs, was also suppressed by decreased 2-Cys Prxs contents, as the ntrc-trxf1f2-Δ2cp mutant partially recovered the efficiency of light energy utilization and exhibited WT rate of CO fixation and growth phenotype. The suppressor phenotype was not caused by compensatory effects of additional chloroplast antioxidant systems. It is proposed that the Fd-FTR-Trx and NTRC redox systems are linked by the redox balance of 2-Cys Prxs, which is crucial for chloroplast function.
Versión del editorhttps://doi.org/10.1073/pnas.1706003114
URIhttp://hdl.handle.net/10261/190096
DOI10.1073/pnas.1706003114
ISSN0027-8424
E-ISSN1091-6490
Licencia de usohttp://creativecommons.org/licenses/by/4.0/
Aparece en las colecciones: (IBVF) Artículos



Ficheros en este ítem:
Fichero Descripción Tamaño Formato
NTRC-dependent_redox_balance_2-Cys_peroxiredoxins.pdf1,08 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

62
checked on 19-nov-2024

SCOPUSTM   
Citations

103
checked on 20-nov-2024

WEB OF SCIENCETM
Citations

95
checked on 26-feb-2024

Page view(s)

265
checked on 04-ago-2025

Download(s)

179
checked on 04-ago-2025

Google ScholarTM

Check

Altmetric

Altmetric



Artículos relacionados:


Este item está licenciado bajo una Licencia Creative Commons Creative Commons